Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JCTB.2025.02.004 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
For every k >= 2 and Delta, we prove that there exists a constant C Delta,k such that the following holds. For every graph H with chi(H) = k and every tree T with at least C Delta,k|H| vertices and maximum degree at most Delta, the Ramsey number R(T, H) is (k - 1)(|T|- 1) + sigma(H), where sigma(H) is the size of a smallest colour class across all proper k-colourings of H. This is tight up to the value of C Delta,k, and confirms a conjecture of Balla, Pokrovskiy, and Sudakov. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Montgomery, Richard | - |
Univ Warwick - Reino Unido
Faculty of Science, Engineering and Medicine - Reino Unido |
| 2 | Pavez-Signe, Matias | - |
Universidad de Chile - Chile
|
| 3 | Yan, Jun | - |
Univ Warwick - Reino Unido
Faculty of Science, Engineering and Medicine - Reino Unido |
| Fuente |
|---|
| European Research Council |
| UK EPSRC |
| Engineering and Physical Sciences Research Council |
| Leverhulme Trust |
| European Research Council (ERC) under the European Union |
| Horizon 2020 |
| Agencia Nacional de Investigación y Desarrollo |
| ANID-Fondecyt |
| Warwick Mathematics Institute Centre for Doctoral Training |
| ANID Basal Grant CMM |
| Agradecimiento |
|---|
| 1 RM supported by the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 947978) and the Leverhulme Trust (grant No. PLP-2020-183) .2 MPS supported by ANID-FONDECYT Regular grant No. 1241398, by ANID Basal Grant CMM FB210005, and by the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 947978) .3 JY supported by the Warwick Mathematics Institute Centre for Doctoral Training, and by funding from the UK EPSRC (Grant number: EP/W523793/1) . |
| RM supported by the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 947978) and the Leverhulme Trust (grant No. PLP-2020-183).MPS supported by ANID-FONDECYT Regular grant No. 1241398, by ANID Basal Grant CMM FB210005, and by the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 947978).JY supported by the Warwick Mathematics Institute Centre for Doctoral Training, and by funding from the UK EPSRC (Grant number: EP/W523793/1). |