Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine learning-based identification of efficient and restrictive physiological subphenotypes in acute respiratory distress syndrome
Indexado
WoS WOS:001434643800001
Scopus SCOPUS_ID:85219597172
DOI 10.1186/S40635-025-00737-9
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



IntroductionAcute respiratory distress syndrome (ARDS) is a severe condition with high morbidity and mortality, characterized by significant clinical heterogeneity. This heterogeneity complicates treatment selection and patient inclusion in clinical trials. Therefore, the objective of this study is to identify physiological subphenotypes of ARDS using machine learning, and to determine ventilatory variables that can effectively discriminate between these subphenotypes in a bedside setting with high performance, highlighting potential utility for future clinical stratification approaches.MethodologyA retrospective cohort study was conducted using data from our ICU, covering admissions from 2017 to 2021. The study included 224 patients over 18 years of age diagnosed with ARDS according to the Berlin criteria and undergoing invasive mechanical ventilation (IMV). Data on physiological and ventilatory variables were collected during the first 24 h IMV. We applied machine learning techniques to categorize subphenotypes in ARDS patients. Initially, we employed the unsupervised Gaussian Mixture Classification Model approach to group patients into subphenotypes. Subsequently, we applied supervised models such as XGBoost to perform root cause analysis, evaluate the classification of patients into these subgroups, and measure their performance.ResultsOur models identified two ARDS subphenotypes with significant clinical differences and significant outcomes. Subphenotype Efficient (n = 172) was characterized by lower mortality, lower clinical severity and presented a less restrictive pattern with better gas exchange compared to Subphenotype Restrictive (n = 52), which showed the opposite. The models demonstrated high performance with an area under the ROC curve of 0.94, sensitivity of 94.2% and specificity of 87.5%, in addition to an F1 score of 0.85. The most influential variables in the discrimination of subphenotypes were distension pressure, respiratory frequency and exhaled carbon dioxide volume.ConclusionThis study presents an approach to improve subphenotype categorization in ARDS. The generation of clustering and prediction models by machine learning involving clinical, ventilatory mechanics, and gas exchange variables allowed for more accurate stratification of patients. These findings have the potential to optimize individualized treatment selection and improve clinical outcomes in patients with ARDS.

Revista



Revista ISSN
2197-425X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Critical Care Medicine
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Meza-Fuentes, Gabriela - Universidad del Desarrollo - Chile
Clínica Alemana - Chile
2 Delgado, Iris - Universidad del Desarrollo - Chile
Clínica Alemana - Chile
3 Barbe, Mario Hombre Universidad del Desarrollo - Chile
Clínica Alemana - Chile
4 Sanchez-Barraza, Ignacio - Universidad del Desarrollo - Chile
Clínica Alemana - Chile
5 Retamal, Mauricio A. - Universidad del Desarrollo - Chile
Clínica Alemana - Chile
6 LOPEZ-HERNANDEZ, RENE Hombre Universidad del Desarrollo - Chile
Clínica Alemana - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by FONDECYT, grant number 1240485. The funder had no role in the design of the study; in the collection, analyses, or interpreta-tion of data; in the writing of the manuscript; or in the decision to publish the results
This research was funded by FONDECYT, grant number 1240485. The funder had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Muestra la fuente de financiamiento declarada en la publicación.