Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Primary scalar hair in Gauss-Bonnet black holes with Thurston horizons
Indexado
WoS WOS:001414307200001
Scopus SCOPUS_ID:85218432629
DOI 10.1140/EPJC/S10052-025-13869-9
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this work, we construct novel asymptotically locally AdS5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_5$$\end{document} black hole solutions of Einstein-Gauss-Bonnet theory at the Chern-Simons point, supported by a scalar field that generates a primary hair. The strength of the scalar field is governed by an independent integration constant; when this constant vanishes, the spacetime reduces to a black hole geometry devoid of hair. The existence of these solutions is intrinsically tied to the horizon metric, which is modeled by three non-trivial Thurston geometries: Nil, Solv, and SL(2,R).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,{\mathbb {R}}).$$\end{document} The quadratic part of the scalar field action corresponds to a conformally coupled scalar in five dimensions -an invariance of the matter sector that is explicitly broken by the introduction of a quartic self-interaction. These black holes are characterized by two distinct parameters: the horizon radius and the temperature. Notably, there exists a straight line in this parameter space along which the horizon geometry exhibits enhanced isometries, corresponding to solutions previously reported in JHEP 02, 014 (2014). Away from this line, for a fixed horizon radius and temperatures above or below a critical value, the metric's isometries undergo spontaneous breaking. Employing the Regge-Teitelboim approach, we compute the mass and entropy of these solutions, both of which vanish. Despite this, only one of the integration constants can be interpreted as hair, as the other modifies the local geometry at the conformal boundary. Finally, for Solv horizon geometries, we extend these hairy solutions to six dimensions.

Revista



Revista ISSN
European Physical Journal C 1434-6044

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Particles & Fields
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Guajardo, Luis - Universidad de Talca - Chile
2 Oliva, Julio - Universidad de Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Universidad de Talca
Instituto de Matemáticas
Adolfo Cisterna and Mokhtar Hassaine

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank Adolfo Cisterna and Mokhtar Hassaine for enlightening comments. L.G expresses his gratitude to Instituto de Matematicas (INSTMAT) of Universidad de Talca, for its hospitality during the preparation of this manuscript. J.O. is partially supported by FONDECYT Grant 1221504.
We thank Adolfo Cisterna and Mokhtar Hassaine for enlightening comments. L.G expresses his gratitude to Instituto de Matem\u00E1ticas (INSTMAT) of Universidad de Talca, for its hospitality during the preparation of this manuscript. J.O. is partially supported by FONDECYT Grant 1221504.

Muestra la fuente de financiamiento declarada en la publicación.