Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/APP15031132 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Reliably detecting COVID-19 is critical for diagnosis and disease control. However, imbalanced data in medical datasets pose significant challenges for machine learning models, leading to bias and poor generalization. The dataset obtained from the EPIVIGILA system and the Chilean Epidemiological Surveillance Process contains information on over 6,000,000 patients, but, like many current datasets, it suffers from class imbalance. To address this issue, we applied various machine learning algorithms, both with and without sampling methods, and compared them using different classification and diagnostic metrics such as precision, sensitivity, specificity, likelihood ratio positive, and diagnostic odds ratio. Our results showed that applying sampling methods to this dataset improved the metric values and contributed to models with better generalization. Effectively managing imbalanced data is crucial for reliable COVID-19 diagnosis. This study enhances the understanding of how machine learning techniques can improve diagnostic reliability and contribute to better patient outcomes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ormeno-Arriagada, Pablo | - |
Universidad de Viña del Mar - Chile
|
| 2 | Marquez, Gaston | - |
Universidad del Bío Bío - Chile
|
| 3 | Araya, David | - |
Universidad Nacional Andrés Bello - Chile
|
| 4 | Rimassa, Carla | - |
Universidad de Valparaíso - Chile
|
| 5 | Taramasco, Carla | - |
Universidad Nacional Andrés Bello - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |
| Agencia Nacional de Investigacion |
| Millennium Science Initiative Program—Millennium Nucleus on Sociomedicine |
| ANID-the Millennium Science Initiative Program-Millennium Nucleus on Sociomedicine |
| Agradecimiento |
|---|
| This work was funded by ANID-the Millennium Science Initiative Program-Millennium Nucleus on Sociomedicine (NCS2021_013). |
| We acknowledge the COVID0739 project and the FONDECYT Regular 1201787 project, titled \u201CMultimodal Machine Learning approach for detecting pathological activity patterns in elderlies\u201D financed by the Agencia Nacional de Investigaci\u00F3n (ANID). |
| We acknowledge the COVID0739 project and the FONDECYT Regular 1201787 project, titled \u201CMultimodal Machine Learning approach for detecting pathological activity patterns in elderlies\u201D financed by the Agencia Nacional de Investigaci\u00F3n (ANID). |