Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/ANDESCON61840.2024.10755680 | ||||
| Año | 2024 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Motion planning comprises one of the main cornerstones in autonomous mobile robotics, where obstacle avoidance and path planning efficiency are quintessential for the success of maneuverability applications. However, real-time implementation of path planning is limited by adaptive scenarios, high dimensional maps, and time constraints. This paper proposes a Double Deep Q-Network approach for path planning and obstacle avoidance of skid-steer mobile robots due to its ability to explore an extended navigation workspace, and to reduce over estimation bias produced by sparse rewards. The proposed DDPG approach was compared to Q-learning and Deep Q-Network (DQN) algorithms to examine path planning performance under changing simulation environments, intended to be similar to those found in mining. Results from several exploration trails show that DDQN enhances the path length and significantly outperforms QL and DQN regarding path following time, reducing it about 26% and 17%, respectively. Ongoing research is expected to have an impact on the energy resources of the robot in mining scenarios.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Camacho Morales, Christian | - |
Universidad Católica del Norte - Chile
|
| 1 | Morales, Christian Camacho | - |
Universidad Católica del Norte - Chile
|
| 2 | Soza Mamani, Kevin Marlon | - |
Univ La Salle Bolivia - Bolivia
Universidad la Salle Bolivia - Bolivia |
| 3 | Prado, Alvaro | Hombre |
Universidad Católica del Norte - Chile
|
| 4 | IEEE Peru Section | Corporación |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Anillo de Investigación en Ciencia y Tecnología |
| Agencia Nacional de Investigación y Desarrollo |
| ANID under Fondecyt Iniciacion en Investigacion 2023 |
| Anillo de Investigaci on en Ciencia y Tecnolog |
| Agradecimiento |
|---|
| The authors thank the support of ANID under Fondecyt Iniciacion en Investigacion 2023 Grant 11230962. It is also acknowledged the support of Anillo de Investigacion en Ciencia y Tecnologia -ACT210052. |
| The authors thank the support of ANID under Fondecyt Iniciaci on en Investigaci on 2023 Grant 11230962. It is also acknowledged the support of Anillo de Investigaci on en Ciencia y Tecnolog ia -ACT210052. |