Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1126/SCIADV.ADQ7797 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, laboratory studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life-how they proliferate in space in multicellular colonies. Using experiments, we find that when polymer is sufficiently concentrated, cells generically and reversibly form large serpentine "cables" as they proliferate. By combining experiments with biophysical theory and simulations, we demonstrate that this distinctive form of colony morphogenesis arises from an interplay between polymer-induced entropic attraction between neighboring cells and their hindered ability to diffusely separate from each other in a viscous polymer solution. Our work thus reveals a pivotal role of polymers in sculpting proliferating bacterial colonies, with implications for how they interact with hosts and with the natural environment, and uncovers quantitative principles governing colony morphogenesis in such complex environments.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | La Corte, Sebastian Gonzalez | - |
Princeton Univ - Estados Unidos
Princeton University - Estados Unidos |
| 1 | Gonzalez La Corte, Sebastian | - |
Princeton University - Estados Unidos
|
| 2 | Stevens, Corey A. | - |
MIT - Estados Unidos
MIT School of Engineering - Estados Unidos |
| 3 | Carcamo-Oyarce, Gerardo | - |
MIT - Estados Unidos
Pontificia Universidad Católica de Chile - Chile MIT School of Engineering - Estados Unidos Facultad de Medicina - Chile |
| 4 | Ribbeck, Katharina | - |
MIT - Estados Unidos
MIT School of Engineering - Estados Unidos |
| 5 | Wingreen, Ned S. | - |
Princeton Univ - Estados Unidos
Princeton University - Estados Unidos |
| 6 | Datta, Sujit S. | - |
CALTECH - Estados Unidos
Princeton Univ - Estados Unidos Division of Chemistry and Chemical Engineering - Estados Unidos School of Engineering and Applied Science - Estados Unidos Princeton University - Estados Unidos |
| Fuente |
|---|
| NIH |
| NSF |
| Camille Dreyfus Teacher- Scholar |
| Eric and Wendy Schmidt Transformative Technology Fund |
| Princeton Catalysis Initiative |
| Canadian Institute of Health Research (CIHR) postdoctoral fellowship |
| Pew Biomedical Scholars Programs |
| NSF Center for the Physics of Biological Function grant |
| Agradecimiento |
|---|
| N.S.W. acknowledges support from NSF Center for the Physics of Biological Function grant PHY- 1734030 and NIH grant R01 GM082938. S.S.D. acknowledges support from NSF grants CBET- 1941716, DMR- 2011750, and EF- 2124863 as well as the Camille Dreyfus Teacher- Scholar and Pew Biomedical Scholars Programs, the Eric and Wendy Schmidt Transformative Technology Fund, and the Princeton Catalysis Initiative. K.R. acknowledges support from NSF grant EF- 2125118. C.A.S. was supported by the Canadian Institute of Health Research (CIHR) postdoctoral fellowship (MFE- 187894). |