Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1093/MNRAS/STAA2512 | ||
| Año | 2020 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
By combining two surveys covering a large fraction of the molecular material in the Galactic disc, we investigate the role spiral arms play in the star formation process. We have matched clumps identified by APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) with their parental giant molecular clouds (GMCs) as identified by SEDIGISM, and use these GMC masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGF(gmc) = Sigma M-clump/M-gmc) and the instantaneous star formation efficiencies (i.e. SFEgmc = Sigma L-clump/M-gmc). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms (similar to 60 per cent found within +/- 10 km s(-1) of an arm). We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and H I to H-2 conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of any physical process.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Urquhart, J. S. | - |
Univ Kent - Reino Unido
|
| 2 | Figura, C. | - |
Wartburg Coll - Estados Unidos
|
| 3 | Cross, J. R. | - |
Univ Kent - Reino Unido
|
| 4 | Wells, M. R. A. | - |
Univ Kent - Reino Unido
|
| 5 | Moore, T. J. T. | - |
Liverpool John Moores Univ - Reino Unido
|
| 6 | Eden, D. J. | - |
Liverpool John Moores Univ - Reino Unido
|
| 7 | Ragan, S. E. | - |
Cardiff Univ - Reino Unido
|
| 8 | Pettitt, A. R. | - |
Hokkaido Univ - Japón
|
| 9 | Duarte-Cabral, A. | - |
Cardiff Univ - Reino Unido
|
| 10 | Colombo, Dario | Hombre |
Max Planck Inst Radioastron - Alemania
|
| 11 | Schuller, F. | Hombre |
Max Planck Inst Radioastron - Alemania
Leibniz Inst Astrophys Potsdam AIP - Alemania |
| 12 | Csengeri, T. | - |
Univ Bordeaux - Francia
|
| 13 | Mattern, M. | - |
Max Planck Inst Radioastron - Alemania
Univ Paris Diderot - Francia |
| 14 | Beuther, H. | Hombre |
Max Planck Inst Astron - Alemania
|
| 15 | Menten, K. M. | Hombre |
Max Planck Inst Radioastron - Alemania
|
| 16 | MORA-FERNANDEZ, ALCIONE | Hombre |
Max Planck Inst Radioastron - Alemania
|
| 17 | Anderson, L. D. | - |
West Virginia Univ - Estados Unidos
|
| 18 | Barnes, P. J. | - |
Space Sci Inst - Estados Unidos
|
| 19 | Beltran, M. T. | - |
INAF Osservatorio Astrofis Arcetri - Italia
|
| 20 | Billington, S. J. | - |
Univ Kent - Reino Unido
|
| 21 | Bronfman, L. | - |
Universidad de Chile - Chile
|
| 22 | Giannetti, A. | - |
INAF Ist Radioastron - Italia
|
| 23 | Kainulainen, J. | - |
Chalmers Univ Technol - Suecia
|
| 24 | Kauffmann, J. | - |
MIT - Estados Unidos
|
| 25 | Lee, M-Y | - |
Korea Astron & Space Sci Inst - Corea del Sur
|
| 26 | Leurini, S. | - |
INAF Osservatorio Astron Cagliari - Italia
|
| 27 | Medina, S-N X. | - |
Max Planck Inst Radioastron - Alemania
|
| 28 | Montenegro-Montes, F. M. | - |
European Southern Observ - Chile
|
| 29 | Riener, M. | - |
Max Planck Inst Astron - Alemania
|
| 30 | Rigby, A. J. | - |
Cardiff Univ - Reino Unido
|
| 31 | Sanchez-Monge, A. | - |
Univ Cologne - Alemania
|
| 32 | Schilke, Peter | Hombre |
Univ Cologne - Alemania
|
| 33 | Schisano, E. | - |
INAF Ist Astrofis & Planetol Spaziali - Italia
|
| 34 | Traficante, A. | - |
INAF Ist Astrofis & Planetol Spaziali - Italia
|
| 35 | Wienen, M. | - |
Univ Exeter - Reino Unido
|
| Fuente |
|---|
| CONICYT |
| INAF |
| Deutsche Forschungsgemeinschaft (DFG) |
| European Union's Horizon 2020 research and innovation program |
| European Research Council under the Horizon 2020 Framework Program via the ERC Consolidator Grant |
| Atacama Pathfinder Experiment (APEX) |
| French State |
| Marie Sklodowska-Curie grant |
| Agradecimiento |
|---|
| We would like to thank the referee for their comments and suggestions that have helped to improve the clarity of a number of important points. This document was produced using the Overleaf web application, which can be found at www.overleaf.com.TC has received financial support from the French State in the framework of the IdEx Universite de Bordeaux Investments for the future Program. HB acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Consolidator Grant CSF-648505. HB also acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) via Sonderforschungsbereich (SFB) 881 `The Milky Way System' (sub-project B1). LB acknowledges support from CONICYT project BasalAFB-170002. SL, AG, and ES have been supported by INAF through the project Fondi mainstream `Heritage of the current revolution in star formation: the Star-forming filamentary Structures in our Galaxy'. The work has partly been carried out within the Collaborative Research Centre 956, subproject A6, funded by the Deutsche Forschungsgemeinschaft (DFG) -project ID 184018867. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 639459 (PROMISE) and (MW) theMarie Sklodowska-Curie grant agreement No 796461. |
| This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX), projects 092.F-9315 and 193.C0584. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. |