Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1093/MNRAS/STAD3487 | ||
| Año | 2024 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Stars embedded in active galactic nucleus (Lambda GN) discs or captured by them may scatter onto the supermassive black hole (SMBH), leading to a tidal disruption event (TDE). Using the moving-mesh hydrodynamics simulations with AREPO, we investigate the dependence of debris properties in in-plane TDEs in AGN discs on the disc density and the orientation of stellar orbits relative to the disc gas (pro- and retro-grade). Key findings are: (1) Debris experiences continuous perturbations from the disc gas, which can result in significant and continuous changes in debris energy and angular momentum compared to 'naked' TDEs. (2) Above a critical density of a disc around an SMBH with mass M-center dot[rho(crit) similar to 10(-8) g cm(-3) (M-center dot/10(6) M-circle dot)(-2.5)] for retrograde stars, both bound and unbound debris is fully mixed into the disc. The density threshold for no bound debris return, inhibiting the accretion component of TDEs, is rho(crit, bound) similar to 10(-9) g cm(-3)(M-center dot/10(6) M-circle dot)-2.5. (3) Observationally, AGN-TDEs transition from resembling naked TDEs in the limit of.disc similar to 10-2.crit, bound to fully muffled TDEs with associated inner disc state changes at.discrit, bound, with a superposition of AGN + TDE in between. Stellar or remnant passages themselves can significantly perturb the inner disc. This can lead to an immediate X-ray signature and optically detectable inner disc state changes, potentially contributing to the changing-look AGN phenomenon. (4) Debris mixing can enrich the average disc metallicity over time if the star's metallicity exceeds that of the disc gas. We point out that signatures of AGN-TDEs may be found in large AGN surveys
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ryu, T. | - |
Max Planck Inst Astrophys - Alemania
Johns Hopkins Univ - Estados Unidos |
| 2 | McKernan, Barry | - |
Flatiron Inst - Estados Unidos
AMER MUSEUM NAT HIST - Estados Unidos CUNY - Estados Unidos |
| 3 | Ford, K. E. Saavik | - |
Flatiron Inst - Estados Unidos
AMER MUSEUM NAT HIST - Estados Unidos CUNY - Estados Unidos |
| 4 | Cantiello, Matteo | - |
Flatiron Inst - Estados Unidos
|
| 5 | Graham, Matthew | - |
CUNY - Estados Unidos
CALTECH - Estados Unidos |
| 6 | Stern, Daniel | Hombre |
CALTECH - Estados Unidos
|
| 7 | Leigh, Nathan W. C. | - |
AMER MUSEUM NAT HIST - Estados Unidos
Universidad de Concepción - Chile |
| Fuente |
|---|
| NSF |
| Millenium Nucleus |
| German Research Foundation (DFG) |
| Simons Foundation |
| ANID BASAL |
| Basal Centro de Excelencia en Astrofisica y Tecnologias Afines (CATA) |
| High Performance Computing Center Stuttgart (HLRS) |
| Fondecyt General |
| Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) |
| Agradecimiento |
|---|
| The authors are grateful to the anonymous referee for carefully reviewing the manuscript. TR is very grateful to Max Gronke for a useful discussion for the mixing of gas. This research project was conducted using computational resources (and/or scientific computing services) at the Max-Planck Computing & Data Facility. The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) under the NHR project b166ea10. NHR funding was provided by federal and Bavarian state authorities. NHR@FAU hardware was partially funded by the German Research Foundation (DFG) -440719683. In addition, some of the simulations were performed on the national supercomputer Hawk at the High Performance Computing Center Stuttgart (HLRS) under the grant number 44232. BM & KESF were supported by NSF AST-2206096 and NSF AST-1831415 and Simons Foundation Grant 533845, with additional sabbatical support from the Simons Foundation. NWCL gratefully acknowledges the generous support of a Fondecyt General grant 1230082, as well as support from Millenium Nucleus NCN19 058 (TITANs) and funding via the BASAL Centro de Excelencia en Astrofisica y Tecnologias Afines (CATA) grant PFB-06/2007. NWCL also thanks support from ANID BASAL project ACE210002 and ANID BASAL projects ACE210002 and FB210003. |