Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00245-024-10200-Y | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work, we use the integral definition of the fractional Laplace operator and study a sparse optimal control problem involving a fractional, semilinear, and elliptic partial differential equation as state equation; control constraints are also considered. We establish the existence of optimal solutions and first and second order optimality conditions. We also analyze regularity properties for optimal variables. We propose and analyze two finite element strategies of discretization: a fully discrete scheme, where the control variable is discretized with piecewise constant functions, and a semidiscrete scheme, where the control variable is not discretized. For both discretization schemes, we analyze convergence properties and a priori error bounds.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bersetche, Francisco | - |
UNIV BUENOS AIRES - Argentina
IMAS CONICET - Argentina Universidad de Buenos Aires - Argentina |
| 2 | Fuica, Francisco | - |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 3 | Otarola, Enrique | - |
Univ Tecn Feder St Maria - Chile
Universidad Técnica Federico Santa María - Chile |
| 4 | Quero, Daniel | - |
Univ Tecn Feder St Maria - Chile
Universidad Técnica Federico Santa María - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Técnica Federico Santa María |
| DOCTORADO |
| Agencia Nacional de Investigación y Desarrollo |
| ANID through FONDECYT |
| Subdirección del Capital Humano |
| NID/Subdireccion del Capital Humano/Doctorado Nacional |
| UTFSM through Programa de Incentivo a la Investigacion and Cientifica (PIIC) |
| Agradecimiento |
|---|
| FB is supported by ANID through FONDECYT Grant 3220254. FF is supported by ANID through FONDECYT Grant 3230126. EO is partially supported by ANID through FONDECYT Grant 1220156. DQ is supported by UTFSM through Programa de Incentivo a la Investigacion and Cientifica (PIIC) and by ANID/Subdireccion del Capital Humano/Doctorado Nacional/2021-21210988. |
| Funding was provided by Fondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico (Grant Number 1220156, 3220254, 3230126). |
| Funding was provided by Fondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico (Grant Number 1220156, 3220254, 3230126). |