Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S41939-025-00749-8 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Wall jet flows are frequently used in cooling electronic equipment, in which a high-velocity fluid is released from a small opening along a flat plate. This kind of system improves heat transfer rates, making it useful for controlling thermal loads in tiny electrical systems. This research intends to provide a novel numerical solution to a non-Newtonian wall jet hybrid nanofluid flow with heat and mass transfer phenomena implementing a colloidal combination of Ag and Cu nanoparticles submerged in sodium alginate base fluid. The present study's novelty is that it provides comparative results on wall jet hybrid nanofluid flow past a permeable stretching surface under the effect of Brownian motion and Thermophoresis. The results are calculated in two flow cases: suction (S > 0) and injection (S < 0). Suitable similarities are used for constructing the non-dimensional model of the governing equations. The bvp-4c technique is used to compute the numerical solutions. The graphical representations reveal the consequences of various non-dimensional constraints on momentum, thermal, and concentration profiles. The novel findings reveal that increased porosity parameter reduces skin friction diminishing resistive force between fluid layers allowing for easy fluid flow. It is found that the reduction is more significant for suction case. Growing values of Thermoporesis parameter reduces Nusselt number due to thick boundary layers reducing convective heat transfer across the boundary and the drop is more in case of injection because the thicker boundary is formed by new fluid entering via injection. A rise in Sherwood number is observed for elevated values of the Thermophoresis parameter and the injection phenomenon offers enhanced mixing and uniform distribution of nanoparticles providing better mass transfer rates. The current research has significant implications for cooling electronic devices, turbine vanes, and improved thermal management systems.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Nihaal, K. M. | - |
Davangere Univ - India
Davangere University - India |
| 2 | Mahabaleshwar, U. S. | - |
Davangere Univ - India
Davangere University - India |
| 3 | Swaminathan, N. | - |
UNIV CAMBRIDGE - Reino Unido
Department of Engineering - Reino Unido |
| 4 | Laroze, D. | - |
Universidad de Tarapacá - Chile
|
| 5 | Perez, L. M. | - |
Universidad de Tarapacá - Chile
|
| Fuente |
|---|
| Agencia Nacional de Investigación y Desarrollo |
| Convocatoria Nacional Subvención a Instalación en la Academia |