Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.PHYSLETA.2025.130305 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Approximate solutions for the quantum bound states of an electron in graphene under a uniaxial strain modulation have been obtained. A first-order Taylor expansion for the Fermi velocity and the pseudo-vector potential in the effective Hamiltonian describing graphene under a uniaxial strain allows us to solve the corresponding differential equation of the eigenvalue problem. A finite number of bound states have been found and its spectrum is composed by non-standard Landau levels, that in contrast to the standard Landau levels, have a dependency on the square root of a second-order polynomial of the principal quantum number. A special case of interest is the periodic strain, where the zeroth-order approximation, that generates standard Landau levels, was derived. It turns out that the first-order approximation generates less energy levels than the zeroth-order approximation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | García-Muñoz, Juan D. | - |
Univ Michoacana - México
Univ Autonoma Chiapas - México Universidad Michoacana de San Nicolás de Hidalgo - México Universidad Autónoma de Chiapas - México |
| 2 | Pérez-Pedraza, J. C. | - |
Univ Nacl Autonoma Mexico - México
Instituto de Ciencias Nucleares de la UNAM - México |
| 3 | Raya, A. | - |
Univ Michoacana - México
Universidad del Bío Bío - Chile Universidad Michoacana de San Nicolás de Hidalgo - México |
| Agradecimiento |
|---|
| We acknowledge the support received from CONAHCyT under grant FORDECYT-PRONACES/61533/2020 and CIC-UMSNH under grant 18371. JDGM acknowledges the financial support from CONAHCyT under grant CBF2023-2024-268. JCPP thanks the support from CONAHCyT under the project CF-2019/428214. |
| Acknowledgments: We acknowledge the support received from CONAHCYT under grant FORDECYT-PRONACES/61533/2020 and CIC-UMSNH under grant 18371. JDGM acknowledges the financial support from CONAHCYT under grant CBF2023-2024-268. JCPP thanks the support from CONAHCyT under the project CF-2019/428214. |