Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Evaluating the strength of industrial wastesbased concrete reinforced with steel fiber using advanced machine learning
Indexado
WoS WOS:001439900500010
Scopus SCOPUS_ID:86000331541
DOI 10.1038/S41598-025-92194-3
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The traditional evaluation of compressive strength through repeated experimental works can be resource-intensive, time-consuming, and environmentally taxing. Leveraging advanced machine learning (ML) offers a faster, cheaper, and more sustainable alternative for evaluating and optimizing concrete properties, particularly for materials incorporating industrial wastes and steel fibers. In this research work, a total of 166 records were collected and partitioned into training set (130 records = 80%) and validation set (36 records = 20%) in line with the requirements of data partitioning and sorting for optimal model performance. These data entries represented ten (10) components of the steel fiber reinforced concrete such as C, W, FAg, CAg, PL, SF, FA, Vf, FbL, and FbD, which were applied as the input variables in the model and Cs, which was the target. Advanced machine learning techniques were applied to model the compressive strength (Cs) of the steel fiber reinforced concrete such as "Semi-supervised classifier (Kstar)", "M5 classifier (M5Rules), "Elastic net classifier (ElasticNet), "Correlated Nystrom Views (XNV)", and "Decision Table (DT)". All models were created using 2024 "Weka Data Mining" software version 3.8.6. Also, accuracies of developed models were evaluated by comparing sum of squared error (SSE), mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), Error (%), Accuracy (%) and coefficient of determination (R2), correlation coefficient (R), willmott index (WI), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE) and symmetric mean absolute percentage error (SMAPE) between predicted and calculated values of the output. At the end, machine learning has been found to be a transformative approach that enhances the efficiency, cost-effectiveness, and sustainability of evaluating compressive strength in industrial wastes-based concrete reinforced with steel fiber. Among the models reviewed, Kstar and DT emerge as the most practical for achieving precise and sustainable results. Their adoption can significantly reduce environmental impacts and promote the sustainable use of industrial by-products in construction. The sensitivity of the input variables on the compressive strength of industrial wastes-based concrete reinforced with steel fiber produced 36% from C, 71% from W, 70% from FAg, 60% from CAg, 34% from PL, 5% from SF, 33% from FA, 67% from Vf, 5% from FbL, and 61% from 61%. Fiber Volume Fraction (Vf) (67%) high sensitivity suggests that steel fiber content greatly impacts crack resistance and tensile strength. Steel Fiber Orientation (61%) indicates the importance of fiber alignment in distributing stresses and enhancing structural integrity.

Revista



Revista ISSN
Scientific Reports 2045-2322

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Multidisciplinary Sciences
Scopus
Multidisciplinary
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Onyelowe, Kennedy C. - Michael Okpara Univ Agr - Nigeria
Kampala Int Univ - Uganda
Michael Okpara University of Agriculture - Nigeria
Kampala International University - Uganda
2 Kamchoom, Viroon - King Mongkuts Inst Technol Ladkrabang KMITL - Tailandia
King Mongkut's Institute of Technology Ladkrabang - Tailandia
3 Ebid, Ahmed M. - Future Univ Egypt - Egipto
Faculty of Engineering & Technology - Egipto
Faculty of Engineering & Technology - Egipto
4 Hanandeh, Shadi - Al Balqa Appl Univ - Jordania
Al-Balqa applied University - Jordania
5 Polo, Susana Monserrat Zurita - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
5 Zurita Polo, Susana Monserrat - Escuela Superior Politécnica de Chimborazo - Ecuador
Escuela Super Politecn Chimborazo ESPOCH - Ecuador
6 Silva, Vilma Fernanda Noboa - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
6 Noboa Silva, Vilma Fernanda - Escuela Superior Politécnica de Chimborazo - Ecuador
Escuela Super Politecn Chimborazo ESPOCH - Ecuador
7 Murillo, Rodney Orlando Santillan - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
7 Santillán Murillo, Rodney Orlando - Escuela Superior Politécnica de Chimborazo - Ecuador
Escuela Super Politecn Chimborazo ESPOCH - Ecuador
8 Vizuete, Rolando Fabian Zabala - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
8 Zabala Vizuete, Rolando Fabian - Escuela Superior Politécnica de Chimborazo - Ecuador
Escuela Super Politecn Chimborazo ESPOCH - Ecuador
9 Awoyera, Paul - Prince Mohammad Bin Fahd Univ - Arabia Saudí
Prince Mohammad Bin Fahd University - Arabia Saudí
10 Avudaiappan, Siva - Universidad Tecnológica Metropolitana - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.