Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Convection, but How Fast Does Fluid Mix in Hydrothermal Systems?
Indexado
WoS WOS:001439820900001
Scopus SCOPUS_ID:105000168346
DOI 10.1029/2024GL112097
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The destabilizing thermal gradient across the Earth's lithosphere drives convection in superconfined hydrothermal environments at mid-ocean ridges and geothermal reservoirs in the continental crust. Deep, hot waters rise in these regions and meet cold surface water that percolates through open fractures, creating complex and poorly understood mixing dynamics. This Letter explores the relationship between energy, convection, and mixing in analog hydrothermal systems. Leveraging energetics theory and lab-scale experiments, we present a scaling formulation for estimating the irreversible mixing boosted by convective flows occurring within faulted and fractured hydrothermal environments. These findings bear relevance to natural Earth processes and human-engineered applications, such as geothermal energy harvesting and geologic CO2 sequestration. Plain Language Summary Earth's internal heat continuously escapes from its hot core to the cold lithosphere, creating a temperature gradient that drives convective fluid motion in confined hydrothermal environments, such as those at mid-ocean ridges and geothermal reservoirs in the continental crust. In these regions, deep, hot waters rise and mix with colder surface waters seeping through fractures, producing complex and poorly understood mixing patterns. This study explores the interplay between energy, convection, and mixing in these systems. Using theoretical frameworks on energy transformation in fluids and innovative lab-scale experiments, we derive mathematical expressions to estimate fluid mixing rates in faulted and fractured hydrothermal environments. Our findings provide insights into the physics of fluids in the Earth's crust and have implications for advancing technologies such as geothermal energy production and underground CO2 storage.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ulloa, H. N. - UNIV PENN - Estados Unidos
University of Pennsylvania - Estados Unidos
2 Noto, Daisuke Hombre UNIV PENN - Estados Unidos
University of Pennsylvania - Estados Unidos
3 Letelier, J. A. - Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
University of Chile
University of Pennsylvania

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
H.N.U. and D.N thank the startup grant at the University of Pennsylvania. J.A. Letelier acknowledges partial support from the startup funding "Apoyo Extraordinario a Proyectos de Investigacion en Etapa Inicial FCFM 2023" of the University of Chile.
H.N.U. and D.N thank the startup grant at the University of Pennsylvania. J.A. Letelier acknowledges partial support from the startup funding \u201CApoyo Extraordinario a Proyectos de Investigaci\u00F3n en Etapa Inicial FCFM 2023\u201D of the University of Chile.

Muestra la fuente de financiamiento declarada en la publicación.