Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.DIAMOND.2025.112188 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The mechanical behavior of core/shell nanoparticles (CS-NPs) with a cubic diamond crystalline core and an amorphous carbon shell was investigated through molecular dynamics simulations using indentation tests. Different CS-NPs were considered, all with a 10 nm core diameter but varying shell thicknesses ranging from 0.0 to 6.5 nm. Indentation revealed a similar elastic response followed by plastic deformation. Increasing shell thickness resulted in a softening effect, with reductions in both maximum and flow contact stress. The MultiSOM machine learning algorithm was used to detect the evolution of several phases in the initially cubic-diamond NP core. Analysis of the plastic deformation mechanisms revealed dislocation nucleation and amorphization within the core, pushing atoms at the core-shell interface and inducing shear transformation zones, which did not evolve into shear bands crossing the shell as observed in other amorphous materials. The degree of strain localization in the amorphous shell increased with shell thickness. Therefore, as shell thickness increased, amorphous shell deformation accommodated a larger fraction of the strain, decreasing dislocation nucleation but allowing more extensive amorphization in the core, with no dislocations at large strain for the thickest shell studied. These results highlight the key role of amorphous shell thickness in determining the elastic and plastic deformation behavior of CS-NPs. Shell thickness is a critical factor in both the onset of plasticity and the nature of deformation mechanisms.
| WOS |
|---|
| Physics, Condensed Matter |
| Physics, Applied |
| Materials Science, Multidisciplinary |
| Materials Science, Coatings & Films |
| Scopus |
|---|
| Chemistry (All) |
| Materials Chemistry |
| Electrical And Electronic Engineering |
| Electronic, Optical And Magnetic Materials |
| Mechanical Engineering |
| Physics And Astronomy (All) |
| SciELO |
|---|
| Sin Disciplinas |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Garcia-Vidable, Gonzalo | - |
Consejo Nacl Invest Cient & Tecn - Argentina
Univ Mendoza - Argentina Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina Universidad de Mendoza - Argentina |
| 2 | Amigo, Nicolas | - |
Universidad Tecnológica Metropolitana - Chile
|
| 3 | Palay, Francisco E. | - |
Universidad Mayor - Chile
|
| 4 | Gonzalez, Rafael I. | - |
Universidad Mayor - Chile
|
| 5 | Aquistapace, Franco | - |
Univ Padua - Italia
Università degli Studi di Padova - Italia |
| 6 | Bringa, Eduardo M. | - |
Consejo Nacl Invest Cient & Tecn - Argentina
Univ Mendoza - Argentina Universidad Mayor - Chile Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina Universidad de Mendoza - Argentina |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Tecnológica Metropolitana |
| Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT, Chile) |
| Agradecimiento |
|---|
| RG thanks the Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT, Chile) under grants #1241569, #1241151 and #13240066. GGV and EMB thank grant PIDIUM 2024-2026. NA thanks the Competition for Research Regular Projects, year 2023, code LPR23-05, Universidad Tecnologica Metropolitana. |
| RG thanks the Fondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico (FONDECYT, Chile) under grants #1241569, #1241151 and #13240066. GGV and EMB thank grant PIDIUM 2024-2026. NA thanks the Competition for Research Regular Projects, year 2023, code LPR23-05, Universidad Tecnol\u00F3gica Metropolitana. |