Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A New Semiparametric Power-Law Regression Model With Long-Term Survival, Change-Point Detection and Regularization
Indexado
WoS WOS:001447853600001
Scopus SCOPUS_ID:105000994092
DOI 10.1002/SIM.70043
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Kidney cancer, a potentially life-threatening malignancy affecting the kidneys, demands early detection and proactive intervention to enhance prognosis and survival. Advancements in medical and health sciences and the emergence of novel treatments are expected to lead to a favorable response in a subset of patients. This, in turn, is anticipated to enhance overall survival and disease-free survival rates. Cure fraction models have become essential for estimating the proportion of individuals considered cured and free from adverse events. This article presents a novel piecewise power-law cure fraction model with a piecewise decreasing hazard function, deviating from the traditional piecewise constant hazard assumption. By analyzing real medical data, we evaluate various factors to explain the survival of individuals. Consistently, positive outcomes are observed, affirming the significant potential of our approach. Furthermore, we use a local influence analysis to detect potentially influential individuals and perform a postdeletion analysis to analyze their impact on our inferences.

Revista



Revista ISSN
Statistics In Medicine 0277-6715

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Public, Environmental & Occupational Health
Mathematical & Computational Biology
Statistics & Probability
Medicine, Research & Experimental
Medical Informatics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Jerez-Lillo, Nixon - Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile
2 Tapia, Alejandra - Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile
3 Lachos, Victor Hugo - Univ Connecticut - Estados Unidos
3 Hugo Lachos, Victor - University of Connecticut - Estados Unidos
4 Ramos, Pedro Luiz - Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FAPESP
Fundação de Amparo à Pesquisa do Estado de São Paulo
University of Connecticut
Doctorado Nacional
Center for Mathematical Sciences
Agencia Nacional de Investigación y Desarrollo
College of Liberal Arts and Sciences, Arizona State University
National Agency for Research and Development
Agenția Națională pentru Cercetare și Dezvoltare
Center for Mathematical Sciences Applied to Industry (CeMEAI) - FAPESP
UConn-CLAS
Research Excellence Program at UConn

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to thank the editor, associate editor, and anonymous referees for their valuable comments and suggestions, which significantly contributed to the improvement of this article. Additionally, they express gratitude to The Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP (grant 2013/07375-0), for providing computational resources. Nixon Jerez-Lillo acknowledges support from the National Agency for Research and Development (ANID) Scholarship Program, Doctorado Nacional, 2021-21210981. Victor Lachos acknowledges partial financial support from UConn-CLAS's Summer Research Funding Initiative 2023 and the Research Excellence Program at UConn.
The authors would like to thank the editor, associate editor, and anonymous referees for their valuable comments and suggestions, which significantly contributed to the improvement of this article. Additionally, they express gratitude to The Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP (grant 2013/07375\u20100), for providing computational resources. Nixon Jerez\u2010Lillo acknowledges support from the National Agency for Research and Development (ANID) Scholarship Program, Doctorado Nacional, 2021\u201021210981. Victor Lachos acknowledges partial financial support from UConn\u2014CLAS's Summer Research Funding Initiative 2023 and the Research Excellence Program at UConn.

Muestra la fuente de financiamiento declarada en la publicación.