Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Ergodic seismic precursors and transfer learning for short term eruption forecasting at data scarce volcanoes
Indexado
WoS WOS:001432846300018
Scopus SCOPUS_ID:85219187441
DOI 10.1038/S41467-025-56689-X
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Seismic data recorded before volcanic eruptions provides important clues for forecasting. However, limited monitoring histories and infrequent eruptions restrict the data available for training forecasting models. We propose a transfer machine learning approach that identifies eruption precursors-signals that consistently change before eruptions-across multiple volcanoes. Using seismic data from 41 eruptions at 24 volcanoes over 73 years, our approach forecasts eruptions at unobserved (out-of-sample) volcanoes. Tested without data from the target volcano, the model demonstrated accuracy comparable to direct training on the target and exceeded benchmarks based on seismic amplitude. These results indicate that eruption precursors exhibit ergodicity, sharing common patterns that allow observations from one group of volcanoes to approximate the behavior of others. This approach addresses data limitations at individual sites and provides a useful tool to support monitoring efforts at volcano observatories, improving the ability to forecast eruptions and mitigate volcanic risks.

Revista



Revista ISSN
Nature Communications 2041-1723

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Multidisciplinary Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ardid, Alberto Hombre Univ Canterbury - Nueva Zelanda
University of Canterbury - Nueva Zelanda
2 Dempsey, David - Univ Canterbury - Nueva Zelanda
University of Canterbury - Nueva Zelanda
3 Caudron, Corentin Hombre Univ Libre Bruxelles - Bélgica
WEL Res Inst - Bélgica
Université libre de Bruxelles - Bélgica
WEL Research Institute - Bélgica
4 Cronin, Shane Hombre UNIV AUCKLAND - Nueva Zelanda
The University of Auckland - Nueva Zelanda
5 Kennedy, Ben - Univ Canterbury - Nueva Zelanda
University of Canterbury - Nueva Zelanda
6 Girona, Tarsilo - Univ Alaska Fairbanks - Estados Unidos
University of Alaska Fairbanks - Estados Unidos
7 Roman, Diana - Observ Carnegie Inst Washington - Estados Unidos
Carnegie Institution of Washington - Estados Unidos
8 Miller, Craig Hombre Te Pu Ao GNS Sci - Nueva Zelanda
GNS Science - Nueva Zelanda
9 Potter, Sally - Te Pu Ao GNS Sci - Nueva Zelanda
GNS Science - Nueva Zelanda
10 Lamb, Oliver D. Hombre Te Pu Ao GNS Sci - Nueva Zelanda
GNS Science - Nueva Zelanda
11 Martanto, Anto - Ctr Volcanol & Geol Hazard Mitigat - Indonesia
Center for Volcanology and Geological Hazard Mitigation - Indonesia
12 Cubuk-Sabuncu, Yesim - Iceland Met Off - Islandia
Icelandic Meteorological Office - Islandia
13 Cabrera, Leoncio Hombre Pontificia Universidad Católica de Chile - Chile
14 Ruiz, Sergio Hombre Universidad de Chile - Chile
15 Contreras, Rodrigo - Universidad Católica de Temuco - Chile
16 Pacheco, Javier - Natl Univ Costa Rica - Costa Rica
Universidad Nacional - Costa Rica
17 Mora, Mauricio M. - UNIV COSTA RICA - Costa Rica
Universidad de Costa Rica - Costa Rica
18 De Angelis, Silvio - UNIV LIVERPOOL - Reino Unido
Ist Nazl Geofis & Vulcanol - Italia
University of Liverpool - Reino Unido
Istituto Nazionale di Geofisica e Vulcanologia, Pisa - Italia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Chile
Ministero dell’Istruzione, dell’Università e della Ricerca
Fonds De La Recherche Scientifique - FNRS
U.S. Geological Survey
Nagoya University
Ministry of Business, Innovation and Employment
Observatorio Volcanologico de los Andes del Sur
British Geological Survey
NZ MBIE
New Zealand Ministry of Business, Innovation & Employment (MBIE)
Ministry for Business Innovation and Employment (MBIE)
Fondation Wiener Anspach
MIUR ("Fondo Finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese")
AVO (Alaska Volcano Observatory)
GNS Science Hazard & Risk Management program (Strategic Science Investment Fund)
Icelandic Meteorological Office
New Zealand Ministry of Business, Innovation & Employment
Wel Research Institute
UNRN-CONICET
Instituto de Investigación en Paleobiología y Geología
GNS Science Hazard & Risk Management program
Fondation Philippe Wiener - Maurice Anspach

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We acknowledge GEONET (New Zealand) and AVO (Alaska Volcano Observatory, USA) seismic monitoring systems for supplying free access to their volcanic seismic data. We wish to thank NZ MBIE UOAX1913 (Transitioning Taranaki to a Volcanic Future) for support of AA, DD, and SJC during this study. We wish to thank NZ MBIE E7774 (Adapting to climate change through stronger geothermal enterprises') for support of AA, DD, and SJC during this study. CC acknowledges the funding from the Fonds De La Recherche Scientifique - FNRS (CalderaSounds project), the Fondation Wiener Anspach, and the Wel Research Institute (Geo4D project). LC thanks the support of the 'Programa de Riesgo Sismico' (PRS, Actividades de Interes Nacional, Universidad de Chile). SP and OL were supported by the New Zealand Ministry of Business, Innovation & Employment (MBIE) through the GNS Science Hazard & Risk Management program (Strategic Science Investment Fund, contract C05X1702). Support from the U.S. Geological Survey under Cooperative Agreement No. G21AC10384 is acknowledged. Silvio De Angelis was supported by "Progetto INGV Pianeta Dinamico" -Sub-project VT_DYNAMO 2023- code CUP D53J19000170001 - funded by MIUR ("Fondo Finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese", legge 145/2018). We thank the Icelandic Meteorological Office (IMO) and Dr Kristin Jonsdottir for providing data for the Eyja. volcano. We thank the Observatorio Volcanologico de los Andes del Sur (OVDAS-SERNAGEOMIN) and Dr Francisco Delgado for providing the seismological data of the Caulle volcano through the Portal de Transparencia system, which is freely accessible through their website. We thank the Dr Ivan Melchor and 'Instituto de Investigacion en Paleobiologia y Geologia' (UNRN-CONICET), Argentina, for providing the seismological data of the Copahue volcano. We thank Dr Yuta Maeda and the Nagoya University, Japan, for providing data of the Mt Ontake. We also thank Dr Yasua Ogawa for its support for collecting this data. The authors thank the British Geological Survey for providing access to the seismic data for Soufriere Hills Volcano. We present and analyze the pre-eruptive performance of models exclusively for volcanoes where data were collected through open access, which are 12 volcanoes in the US and New Zealand. This is due to observatories sensitivities and shared data agreements. However, it's important to note that the models are trained using all available data for each respective pool.
We acknowledge GEONET (New Zealand) and AVO (Alaska Volcano Observatory, USA) seismic monitoring systems for supplying free access to their volcanic seismic data. We wish to thank NZ MBIE UOAX1913 (Transitioning Taranaki to a Volcanic Future) for support of AA, DD, and SJC during this study. We wish to thank NZ MBIE E7774 (Adapting to climate change through stronger geothermal enterprises\u2019) for support of AA, DD, and SJC during this study. CC acknowledges the funding from the Fonds De La Recherche Scientifique - FNRS (CalderaSounds project), the Fondation Wiener Anspach, and the Wel Research Institute (Geo4D project). LC thanks the support of the \u2018Programa de Riesgo S\u00EDsmico\u2019 (PRS, Actividades de Inter\u00E9s Nacional, Universidad de Chile). SP and OL were supported by the New Zealand Ministry of Business, Innovation & Employment (MBIE) through the GNS Science Hazard & Risk Management program (Strategic Science Investment Fund, contract C05X1702). Support from the U.S. Geological Survey under Cooperative Agreement No. G21AC10384 is acknowledged. Silvio De Angelis was supported by \u201CProgetto INGV Pianeta Dinamico\u201D -Sub-project VT_DYNAMO 2023- code CUP D53J19000170001 - funded by MIUR (\u201CFondo Finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese\u201D, legge 145/2018). We thank the Icelandic Meteorological Office (IMO) and Dr Krist\u00EDn J\u00F3nsd\u00F3ttir for providing data for the Eyja. volcano. We thank the Observatorio Volcanol\u00F3gico de los Andes del Sur (OVDAS-SERNAGEOMIN) and Dr Francisco Delgado for providing the seismological data of the Caulle volcano through the Portal de Transparencia system, which is freely accessible through their website. We thank the Dr Ivan Melchor and \u2018Instituto de Investigaci\u00F3n en Paleobiolog\u00EDa y Geolog\u00EDa\u2019 (UNRN-CONICET), Argentina, for providing the seismological data of the Copahue volcano. We thank Dr Yuta Maeda and the Nagoya University, Japan, for providing data of the Mt Ontake. We also thank Dr Yasua Ogawa for its support for collecting this data. The authors thank the British Geological Survey for providing access to the seismic data for Soufri\u00E8re Hills Volcano. We present and analyze the pre-eruptive performance of models exclusively for volcanoes where data were collected through open access, which are 12 volcanoes in the US and New Zealand. This is due to observatories sensitivities and shared data agreements. However, it\u2019s important to note that the models are trained using all available data for each respective pool.

Muestra la fuente de financiamiento declarada en la publicación.