Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/ACCESS.2025.3529317 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The quadratic multiple knapsack problem (QMKP) is a well-studied problem in operations research. This problem involves selecting a subset of items that maximizes the linear and quadratic profit without exceeding a set of capacities for each knapsack. While its solution using metaheuristics has been explored, exact approaches have recently been investigated. One way to improve the performance of these exact approaches is by reducing the solution space in different instances, considering the properties of the items in the context of QMKP. In this paper, machine learning (ML) models are employed to support an exact optimization solver by predicting the inclusion of items with a certain level of confidence and classifying them. This approach reduces the solution space for exact solvers, allowing them to tackle more manageable problems. The methodological process is detailed, in which ML models are generated and the best one is selected to be used as a preprocessing approach. Finally, we conduct comparison experiments, demonstrating that using a ML model is highly beneficial for reducing computing times and achieving rapid convergence.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Yanez-Oyarce, Diego | - |
Universidad del Bío Bío - Chile
|
| 2 | Contreras-Bolton, Carlos | - |
Universidad de Concepción - Chile
|
| 3 | Troncoso-Espinosa, Fredy | - |
Universidad del Bío Bío - Chile
|
| 4 | Rey, Carlos | - |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Vicerrectoria de Investigacion y Postgrado |
| Agencia Nacional de Investigación y Desarrollo |
| Agenția Națională pentru Cercetare și Dezvoltare |
| ''Subvencion a la Instalacion en la Academia'' Folio |
| Vicerrectoria de Investigacion y Postgrado (UBB-VRIP) through the ''Proyecto de Investigacion Interno |
| National Agency for Research and Development (ANID) through the FONDECYT Iniciacion |
| UBB-VRIP |
| Agradecimiento |
|---|
| This work was supported in part by ''Subvencion a la Instalacion en la Academia'' Folio under Grant 85220108, in part by Vicerrectoria de Investigacion y Postgrado (UBB-VRIP) through the ''Proyecto de Investigacion Interno 2023'' under Grant RE2360219, and in part by the National Agency for Research and Development (ANID) through the FONDECYT Iniciacion under Project 11241132. |
| This work was supported in part by ''Subvenci\u00F3n a la Instalaci\u00F3n en la Academia'' Folio under Grant 85220108, in part by Vicerrectoria de Investigaci\u00F3n y Postgrado (UBB-VRIP) through the ''Proyecto de Investigaci\u00F3n Interno 2023'' under Grant RE2360219, and in part by the National Agency for Research and Development (ANID) through the FONDECYT Iniciaci\u00F3n under Project 11241132. |