Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/APP15041777 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The increasing complexity of autonomous vehicles has exposed the limitations of many existing control systems. Reinforcement learning (RL) is emerging as a promising solution to these challenges, enabling agents to learn and enhance their performance through interaction with the environment. Unlike traditional control algorithms, RL facilitates autonomous learning via a recursive process that can be fully simulated, thereby preventing potential damage to the actual robot. This paper presents the design and development of an RL-based algorithm for controlling the collaborative formation of a multi-agent Khepera IV mobile robot system as it navigates toward a target while avoiding obstacles in the environment by using onboard infrared sensors. This study evaluates the proposed RL approach against traditional control laws within a simulated environment using the CoppeliaSim simulator. The results show that the performance of the RL algorithm gives a sharper control law concerning traditional approaches without the requirement to adjust the control parameters manually.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | García-Ros, Gonzalo | Hombre |
Virginia Commonwealth Univ - Estados Unidos
VCU College of Engineering - Estados Unidos |
| 2 | Eskandarian, Azim | - |
Virginia Commonwealth Univ - Estados Unidos
VCU College of Engineering - Estados Unidos |
| 3 | Fabregas, Ernesto | Hombre |
Univ Nacl Edicac Distancia UNED - España
Universidad Nacional de Educación a Distancia - España |
| 4 | Vargas, Hector | - |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 5 | FARIAS-CASTRO, GONZALO ALBERTO | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Ministerio de Ciencia e Innovación |
| Ministry of Science and Innovation of Spain |
| Agencia Estatal de Investigación |
| Agencia Nacional de Investigación y Desarrollo |
| Chilean Research and Development Agency |
| Chilean Research and Development Agency (ANID) |
| Agencia Estatal de Investigacion of Spain (AEI) |
| Agradecimiento |
|---|
| This research was funded, in part, by the Chilean Research and Development Agency (ANID) under Projects FONDECYT 1191188. The Ministry of Science and Innovation of Spain under Project PID2022-137680OB-C32. The Agencia Estatal de Investigacion of Spain (AEI) under Project PID2022-139187OB-I00. |
| This research was funded, in part, by the Chilean Research and Development Agency (ANID) under Projects FONDECYT 1191188. The Ministry of Science and Innovation of Spain under Project PID2022-137680OB-C32. The Agencia Estatal de Investigaci\u00F3n of Spain (AEI) under Project PID2022-139187OB-I00. |