Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/IJMS26041671 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Two new Cu(II) (CP1) and Co(II) (CP2) coordination polymers (CPs) with the triazole ligand 5-methyl-1-(pyridin-4-yl-methyl)-1H-1,2,3-triazole-4-carboxylate (L1) have been synthesized and structurally characterized by SCXRD (Single Crystal X-Ray Difraccion), PXRD (Power X-Ray Difracction), FT-IR (Fourier Transform Infrared), TG (Theermo Gravimetric), and electrochemical techniques. Both CPs were obtained at the water/n-butanol interface by reacting nitrate salts of each metal with the NaL1 ligand. SCXRD analysis revealed that CP1 (Coordination Polymer 1) and CP2 (Coordination Polymer 2) crystallize in the monoclinic space groups C2/c (No. 15) and P21/n (No. 14), respectively, forming 1D zigzag chain structures, which further lead to a 2D supramolecular network through O-H & ctdot;O and C-H & ctdot;O hydrogen bond interactions, respectively. In CP1, the supramolecular structure is assembled by hydrogen bonds involving water molecules. In contrast, CP2 forms its supramolecular network mainly through hydrogen bonds between adjacent triazole ligand molecules. Hirshfeld surface analysis revealed that the most significant contributions to the crystal packing come from H & ctdot;O/O & ctdot;H, H & ctdot;H, H & ctdot;N/N & ctdot;H, and H & ctdot;C/C & ctdot;H interactions. In addition, FT-IR provided information on the functional groups involved in the coordination, while the decomposition patterns of both CPs were evaluated by TGA. Electrochemical studies conducted in a saline environment showed that CP1 exhibits superior hydrogen evolution reaction (HER) kinetics compared to CP2, as evidenced by a higher exchange current density and a lower Tafel slope. Density functional theory calculations and experimental bandgap measurements provided a deeper understanding of the electronic properties influencing the electrochemical behavior. The results highlight the potential of CP1 as an efficient catalyst for HER under saline conditions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bergedahl, Markus | - |
Universidad de Antofagasta - Chile
|
| 2 | Narea, Pilar | - |
Universidad de Antofagasta - Chile
|
| 3 | Llanos, Jaime | - |
Universidad Católica del Norte - Chile
|
| 4 | Pulido, Ruth | - |
Universidad de Antofagasta - Chile
UNIV AUTONOMA MADRID - España Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España |
| 5 | Naveas, Nelson | - |
UNIV AUTONOMA MADRID - España
Universidad de Antofagasta - Chile Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España Universidad Autónoma de Madrid - España |
| 6 | Amo-Ochoa, Pilar | - |
UNIV AUTONOMA MADRID - España
Universidad Autónoma de Madrid - España |
| 7 | Zamora, Felix | - |
UNIV AUTONOMA MADRID - España
Universidad Autónoma de Madrid - España IFIMAC-Condensed Matter Physics Center - España |
| 8 | Delgado, Gerzon E. | - |
Universidad de Los Andes, Chile - Venezuela
Universidad De Los Andes Facultad de Ciencias - Venezuela |
| 9 | Madrid, Felipe M. Galleguillos | - |
Universidad de Antofagasta - Chile
|
| 9 | Galleguillos Madrid, Felipe M. | - |
Universidad de Antofagasta - Chile
|
| 10 | Leon, Yasna | - |
Universidad de Antofagasta - Chile
|
| 11 | Brito, Ivan | - |
Universidad de Antofagasta - Chile
|
| Fuente |
|---|
| MINEDUC-UA |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad de Antofagasta |
| Universidad Autónoma de Madrid |
| MINEDUC-UA project |
| Solar Energy Research Center |
| Fondequip EQM |
| VRIIP-UA |
| ANID (Chile) |
| Agencia Nacional de Investigación y Desarrollo |
| Vicerrectoría de Investigación, Innovación y Postgrado |
| Fondo Nacional de Desarrollo Cientifico y Tecnologico" FONDECYT (Chile) |
| National Program of Sciences and Technological Materials |
| Direccion de Gestion de la investigacion (DGI-UA) of the Universidad de Antofagasta (Chile) |
| Vicerrectoria de Investigacion, Innovacion y Postgrado (VRIIP- UA) |
| MCINN/AEI under the National Program of Sciences and Technological Materials |
| Solar Energy Research Center (SERC) (Chile) |
| Agradecimiento |
|---|
| The authors thank ANID for financial support from the "Fondo Nacional de Desarrollo Cientifico y Tecnologico" [FONDECYT (Chile), grant nos. 1210689 and 1170256; FONDEQUIP EQM, grant nos. 130021, 180024, and 210029] (I. Brito). This work was supported by MCINN/AEI/10.13039/5011000011033 under the National Program of Sciences and Technological Materials [grant nos. PID2022-138968NB-C21 and TED2021-131132B-C22] (P. Amo-Ocho; F. Zamora). The authors also acknowledge the Vicerrectoria de Investigacion, Innovacion y Postgrado (VRIIP- UA), and Direccion de Gestion de la investigacion (DGI-UA) of the Universidad de Antofagasta (Chile) for financial support [grant no. SEM-18, Concurso ayudante de investigacion, 2021 and 2022] (M. Bergedahl). P. Narea thanks ANID (Chile) for support in the form of a graduate fellowship (no. 21190030). This work was partially completed through a visit made by G.E. Delgado to the Universidad de Antofagasta, supported by the MINEDUC-UA project, code: ANT 1856. This work was partially carried out by Ivan Brito Bobadilla during a visit to the Universidad Autonoma de Madrid, supported by the MINEDUC-UA project, code: ANT 22991. The authors are grateful for the support of ANID (Chile) through the research projects FONDECYT Iniciacion 11230550 and ANID/FONDAP 1523A0006, the Solar Energy Research Center (SERC) (Chile) (F. Galleguillos). |
| The authors thank ANID for financial support from the \u201CFondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico\u201D [FONDECYT (Chile), grant nos. 1210689 and 1170256; FONDEQUIP EQM, grant nos. 130021, 180024, and 210029] (I. Brito). This work was supported by MCINN/AEI/10.13039/5011000011033 under the National Program of Sciences and Technological Materials [grant nos. PID2022\u2013138968NB-C21 and TED2021\u2013131132B\u2013C22] (P. Amo-Ocho; F. Zamora). The authors also acknowledge the Vicerrector\u00EDa de Investigaci\u00F3n, Innovaci\u00F3n y Postgrado (VRIIP-UA), and Direcci\u00F3n de Gesti\u00F3n de la investigaci\u00F3n (DGI-UA) of the Universidad de Antofagasta (Chile) for financial support [grant no. SEM-18, Concurso ayudante de investigaci\u00F3n, 2021 and 2022] (M. Bergedahl). P. Narea thanks ANID (Chile) for support in the form of a graduate fellowship (no. 21190030). This work was partially completed through a visit made by G.E. Delgado to the Universidad de Antofagasta, supported by the MINEDUC-UA project, code: ANT 1856. This work was partially carried out by Iv\u00E1n Brito Bobadilla during a visit to the Universidad Aut\u00F3noma de Madrid, supported by the MINEDUC-UA project, code: ANT 22991. The authors are grateful for the support of ANID (Chile) through the research projects FONDECYT Iniciaci\u00F3n 11230550 and ANID/FONDAP 1523A0006, the Solar Energy Research Center (SERC) (Chile) (F. Galleguillos). |