Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A New Compressor Failure Prognostic Method Using Nonlinear Observers and a Bayesian Algorithm for Heavy-Duty Gas Turbines
Indexado
WoS WOS:000966677000001
DOI 10.1109/JSEN.2022.3233585
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Failure prognostic predicts the remaining useful life (RUL) of machine/components, which will allow timely maintenance and repair leading to continuous reliable and safe operating conditions. In this article, a novel hybrid RUL prediction approach is proposed for heavy-duty gas turbines. Two common failures, namely the fouling in the gas turbine compressor and filter defect, are investigated. First, a discrete wavelet transform (DWT) is applied to real-time measurements to reduce the effect of noise. A parallel structure consisting of a Laguerre filter and neuro-fuzzy is then constructed to identify nonlinear failure dynamics and generate residuals. These residuals are then utilized to estimate the failure severity. Following that, Bayesian theory is employed to predict the RUL. A novel feature of the approach is that the Laguerre filter is designed by using orthogonal basis functions (OBFs), which deliver precise estimates. Another benefit is that the proposed parallel configuration accurately identifies failure dynamics and boosts the RUL prediction performance. Experimental test studies on heavy-duty gas turbines indicate the high efficiency of the proposed RUL estimation in comparison to other failure prognostic strategies.

Revista



Revista ISSN
Ieee Sensors Journal 1530-437X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Applied
Instruments & Instrumentation
Engineering, Electrical & Electronic
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Kordestani, Mojtaba - Univ Windsor - Canadá
2 Mousavi, Mehdi - Univ Windsor - Canadá
3 Chaibakhsh, Ali - Univ Guilan - Iran
4 Orchard, Marcos E. - Universidad de Chile - Chile
5 Khorasani, Khashayar Hombre Concordia Univ - Canadá
6 Saif, Mehrdad Hombre Univ Windsor - Canadá

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Natural Sciences and Engineering Research Council (NSERC) of Canada
Advanced Center for Electrical and Electronic Engineering, AC3E

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The work of Dr. Marcos E. Orchard was supported in part by the FONDECYT under Grant 1210031; and in part by the Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project FB0008, ANID.

Muestra la fuente de financiamiento declarada en la publicación.