Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Bayesian Hierarchical Model Combination Framework for Real-Time Daily Ensemble Streamflow Forecasting Across a Rainfed River Basin
Indexado
WoS WOS:000941683500024
DOI 10.1029/2022EF002958
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The frequent occurrence of floods during the rainy season is one of the threats in rainfed river basins, especially in river basins of India. This study implemented a Bayesian hierarchical model combination (BHMC) framework to generate skillful and reliable real-time daily ensemble streamflow forecast and peak flow and demonstrates its utility in the Narmada River basin in Central India for the peak monsoon season (July-August). The framework incorporates information from multiple sources (e.g., deterministic hydrological forecast, meteorological forecast, and observed data) as predictors. The forecasts were validated with a leave-1-year-out cross-validation using accuracy metrics such as BIAS and Pearson correlation coefficient (R) and probabilistic metrics such as continuous ranked probability skill score, probability integral transform (PIT) plots, and the average width of the 95% confidence intervals (AWCI) plots. The results show that the BHMC framework can increase the forecast skill by 40% and reduce absolute bias by at least 28% compared to the raw deterministic forecast from a physical model, the Variable Infiltration Capacity model. In addition, PIT and AWCI show that the framework can provide sharp and reliable streamflow forecast ensembles for short lead times (1-3-day lead time) and provide useful skills beyond up to 5-day lead time. These will be of immense help in emergency and disaster preparedness.

Revista



Revista ISSN
Earths Future 2328-4277

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Environmental Sciences
Meteorology & Atmospheric Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ossandon, Alvaro - UNIV COLORADO - Estados Unidos
Universidad Técnica Federico Santa María - Chile
2 Rajagopalan, Balaji - UNIV COLORADO - Estados Unidos
3 Tiwari, Amar Deep Hombre Indian Inst Technol - India
4 Thomas, Thomas - Natl Inst Hydrol - India
5 Mishra, Vimal - Indian Inst Technol - India

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Monsoon Mission project of the Ministry of Earth Sciences, India
Fulbright Foreign Student Program
National Agency for Research and Development(ANID) Scholarship Program/DOCTORADO BECAS CHILE
University of Colorado Boulder Libraries Open Access Fund

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The publication of this article was funded by the University of Colorado Boulder Libraries Open Access Fund. This project was funded by the Monsoon Mission project of the Ministry of Earth Sciences, India. We also acknowledge the support from the Fulbright Foreign Student Program and the National Agency for Research and Development (ANID) Scholarship Program/DOCTORADO BECAS CHILE/2015-56150013 to the first author.

Muestra la fuente de financiamiento declarada en la publicación.