Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Correlation functions of the Bjorken flow in the holographic Schwinger-Keldysh approach
Indexado
WoS WOS:001128821600011
DOI 10.1103/PHYSREVRESEARCH.5.043230
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



One of the outstanding problems in the holographic approach to many-body physics is the explicit computation of correlation functions in nonequilibrium states. We provide a new and simple proof that the horizon cap prescription of Crossley-Glorioso-Liu for implementing the thermal Schwinger-Keldysh contour in the bulk is consistent with the Kubo-Martin-Schwinger periodicity and the ingoing boundary condition for the retarded propagator at any arbitrary frequency and momentum. The generalization to the hydrodynamic Bjorken flow is achieved by a Weyl rescaling in which the dual black hole's event horizon attains a constant surface gravity and area at late time although the directions longitudinal and transverse to the flow expand and contract, respectively. The dual state's temperature and entropy density thus become constants (instead of the perfect fluid expansion) although no time-translation symmetry emerges at late time. Undoing the Weyl rescaling, the correlation functions can be computed systematically in a large proper time expansion in inverse powers of the average of the two reparametrized proper time arguments. The horizon cap has to be pinned to the nonequilibrium event horizon so that regularity and consistency conditions are satisfied. Consequently, in the limit of perfect fluid expansion, the Schwinger-Keldysh correlation functions with space-time reparametrized arguments are simply thermal at an appropriate temperature. A generalized bilocal thermal structure holds to all orders. We argue that the Stokes data (which are functions rather than constants) for the hydrodynamic correlation functions can decode the quantum fluctuations behind the horizon cap pinned to the evolving event horizon, and thus the initial data.

Revista



Revista ISSN
2643-1564

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Physics And Astronomy (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Banerjee, Avik - UNIV PARIS - Francia
Indian Inst Technol Madras - India
2 Mitra, Toshali - Asia Pacific Ctr Theoret Phys - Corea del Sur
Inst Math Sci - India
Homi Bhabha Natl Inst - India
3 Mukhopadhyay, Ayan - Pontificia Universidad Católica de Valparaíso - Chile
Indian Inst Technol Madras - India

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
IFCPAR/CEFIPRA
IIT Madras
Ministry of Education of India
Ramanujan Fellowship and Early Career Research Award of the Science and Engineering Board of Department of Science and Technology of India

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank Kostas Skenderis and Balt van Rees for helpful discussions and sharing many insights on the issues discussed in Sec. VI. A.M. acknowledges support from the Ramanujan Fellowship and Early Career Research Award of the Science and Engineering Board of Department of Science and Technology of India, new faculty seed grant of IIT Madras, the institute of excellence schemes of the Ministry of Education of India, and also the IFCPAR/CEFIPRA funded Project no. 6304-3. The research of A.B. is supported by IFCPAR/CEFIPRA funded Project no. 6304-3.

Muestra la fuente de financiamiento declarada en la publicación.