Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Development of Risk Activity Detection System for Forklifts Based on Inertial Sensors
Indexado
WoS WOS:001398098800011
Scopus SCOPUS_ID:85214120357
DOI 10.1109/ACCESS.2024.3524032
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Forklifts are mobile heavy machines that are used to transport, lift, or lower objects without the high physical effort of the operator. They work in different types of industries such as logistics, retail, food, mining, and construction, among others. Qualified personnel usually operate the forklifts to handle heavy loads in an environment surrounded by other workers. This creates a high risk of accidents due to the lack of visibility with a loaded forklift, the random movement of the workers around the area and possible risk maneuvers sometimes required in a normal day of operation. For example, in Chile 2000 accidents occur per year due to one of the mentioned situations. For this reason, the detection of risk maneuvers to prevent accidents is essential. This article shows a cost-effective solution proposal to implement an inertial sensor network with a dedicated wireless communication and automatic deep-learning algorithms to detect forklift risk events. A test bench was designed where a crane forklift equipped with four inertial sensors performed normal and risky maneuvers, according to the Occupational Safety and Health Administration (OSHA) 3949. During the forklift operation, the sensors measured the accelerations and angular velocities in three axes. Videos of the operation were also taken as reference. In this paper, we developed convolutional neural networks (CNN) and long-term memory (LSTM) algorithms to infer a risky maneuver from the inertial sensors data and compared it to the outcome of a video-based model trained on data labeled by a risk-prevention engineer. After field testing with the forklift, the inertial data-based algorithms had an average F1 of 0.93 versus video analysis which had an average F1 of 0.95. However, models based on inertial data take a quarter of the time to make the inference compared to video-based models.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Radrigan, Luciano Hombre Universidad de Concepción - Chile
2 Godoy, Sebastian E. - Universidad de Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID
Agencia Nacional de Investigación y Desarrollo
Becas de Doctorado Nacional

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by ANID through the scholarship ANID/Becas de Doctorado Nacional under Grant 2021-21210655.
This work was supported by ANID through the scholarship ANID/Becas de Doctorado Nacional under Grant 2021-21210655.

Muestra la fuente de financiamiento declarada en la publicación.