Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A generalized neural network for accurate estimation of soot temperature in laminar flames using a single RGB image
Indexado
WoS WOS:001412964800001
Scopus SCOPUS_ID:85215811397
DOI 10.1016/J.JOEI.2025.102001
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Soot temperature is a relevant factor related to the efficiency of combustion processes. Artificial neural networks have started to be used to estimate soot temperature distributions in laminar flames by analyzing images captured with optical setup of varying complexity. These networks often achieve greater accuracy and precision than traditional methods that rely on explicit theoretical models and numerical approaches. However, most prior studies validate the neural networks on limited subsets of canonical flames, which may lead to overfitting. For these methods to be practically useful, a trained network should generalize across diverse flame conditions without needing retraining. This paper introduces the use of Attention U-Net models for soot pyrometry, utilizing only broadband flame emission images captured with a RGB camera. Simulation results demonstrate that the Attention U-Net achieves more accurate temperature estimations compared to previously reported learning-based methods. Additionally, we evaluate the model's generalization capabilities, showing that a network trained on simulated data maintains high accuracy when applied to images of laminar flames across various experimental conditions with errors below 30 K. Tests with experimental data further reveal that the proposed approach, using a single, produces temperature estimates comparable to those obtained through well-established techniques that require more complex equipment and processing. Moreover, the network exhibits strong robustness to measurement noise and remains effective inflames with low soot loading, where traditional reference techniques suffer from reduced signal-to-noise ratios and diminished accuracy.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Energy & Fuels
Scopus
Energy Engineering And Power Technology
Electrical And Electronic Engineering
Control And Systems Engineering
Renewable Energy, Sustainability And The Environment
Fuel Technology
Condensed Matter Physics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Portilla, Jorge Hombre Universidad Técnica Federico Santa María - Chile
2 Cruz, J. J. - Pontificia Univ Catolica Peru - Perú
Pontificia Universidad Católica del Perú - Perú
3 Escudero, F. - Universidad Técnica Federico Santa María - Chile
4 Demarco, R. - Universidad Técnica Federico Santa María - Chile
5 Fuentes, A. - Universidad Técnica Federico Santa María - Chile
6 Carvajal, G. - Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Técnica Federico Santa María
Universidad Tecnica Federico Santa Maria, Chile
Chilean National Agency for Research and Development (ANID)
Agencia Nacional de Investigación y Desarrollo

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partially funded by grants PI_M_23_05 and PIIC 19/23 from Universidad Tecnica Federico Santa Maria, Chile; and the Chilean National Agency for Research and Development (ANID) through projects SCIA-Anillo ACT210052, Fondecyt/Iniciacion 11241102, Fondecyt/Regular 1221532 and Fondecyt/Regular 1221372.
This work was partially funded by grants PI_M_23_05 and PIIC 19/23 from Universidad T\u00E9cnica Federico Santa Mar\u00EDa ; and the Chilean National Agency for Research and Development (ANID) through projects SCIA-Anillo ACT210052 , Fondecyt/Iniciaci\u00F3n 11241102 , Fondecyt/Regular 1221532 and Fondecyt/Regular 1221372 .

Muestra la fuente de financiamiento declarada en la publicación.