Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Extracting and Encoding: Leveraging Large Language Models and Medical Knowledge to Enhance Radiological Text Representation
Indexado
WoS WOS:001356731804006
DOI
Año 2024
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Advancing representation learning in specialized fields like medicine remains challenging due to the scarcity of expert annotations for text and images. To tackle this issue, we present a novel two-stage framework designed to extract high-quality factual statements from free-text radiology reports in order to improve the representations of text encoders and, consequently, their performance on various downstream tasks. In the first stage, we propose a Fact Extractor that leverages large language models (LLMs) to identify factual statements from well-curated domain-specific datasets. In the second stage, we introduce a Fact Encoder (CXRFE) based on a BERT model fine-tuned with objective functions designed to improve its representations using the extracted factual data. Our framework also includes a new embedding-based metric (CXRFEScore) for evaluating chest X-ray text generation systems, leveraging both stages of our approach. Extensive evaluations show that our fact extractor and encoder outperform current state-of-the-art methods in tasks such as sentence ranking, natural language inference, and label extraction from radiology reports. Additionally, our metric proves to be more robust and effective than existing metrics commonly used in the radiology report generation literature. The code of this project is available at https://github.com/PabloMessina/CXR-Fact-Encoder.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Messina, Pablo - Pontificia Universidad Católica de Chile - Chile
Millennium Inst Intelligent Healthcare Engn iHEAL - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
2 Vidal, Rene - UNIV PENN - Estados Unidos
3 Parra, Denis - Pontificia Universidad Católica de Chile - Chile
Millennium Inst Intelligent Healthcare Engn iHEAL - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
4 Soto, Alvaro - Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
5 Araujo, Vladimir - Katholieke Univ Leuven - Bélgica
6 Martins, A -
7 Srikumar V -
8 Ku, LW -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondecyt Regular
National Institutes of Health (NIH)
Chilean National Agency for Research and Development
Centro Nacional de Inteligencia Artificial (CENIA)
Instituto Milenio en Ingenieria e Inteligencia Artificial para la Salud (iHEALTH)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was funded by the Chilean National Agency for Research and Development (ANID), including Instituto Milenio en Ingenieria e Inteligencia Artificial para la Salud (iHEALTH) ICN2021_004; Centro Nacional de Inteligencia Artificial (CENIA) FB210017; Fondecyt regular 1231724; Fondecyt 1221425; and the ANID Scholarship Program/Doctorado Becas Chile/2019 -21191569. Additionally, Pablo was supported by the National Institutes of Health (NIH) grant 1R01AG067396. We are grateful for the support from all funding sources mentioned above.

Muestra la fuente de financiamiento declarada en la publicación.