Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Subject-specific modeling by domain adaptation for the estimation of subglottal pressure from neck-surface acceleration signals
Indexado
WoS WOS:001435733600001
Scopus SCOPUS_ID:85218640092
DOI 10.1016/J.BSPC.2025.107681
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Subglottal air pressure is a critical physiologically-based parameter that reveals fundamental pathophysiological processes inpatients with voice disorders. However, its assessment in both laboratory and ambulatory settings presents significant challenges due to the necessity for specialized instruments, invasive procedures, and the impracticality of direct measurement in ambulatory contexts. This study expands upon previous efforts to estimate subglottal pressure from portable, lightweight neck-surface acceleration signals using a physiologically relevant model of voice production combined with machine learning techniques. The proposed approach employs a neural network architecture initially trained with numerical simulations from the voice production model, which is subsequently refined through a domain adaptation strategy from synthetic data to in vivo laboratory data. This proposed method provides a means to create subject and group-specific refinements of the original neural network. For comprehensive comparisons with previous methods reported in the literature, the proposed approach is applied to both normal and disordered voices, including cases of unilateral vocal fold paralysis and phonotraumatic and non-phonotraumatic vocal hyperfunction. The study is divided into two datasets, encompassing a total of 135 participants. The in vivo recordings consist of synchronous measurements of oral airflow, intraoral pressure, and signals from a microphone and a neck-surface accelerometer. Each participant was asked to utter/p/-vowel syllable gestures with variations in loudness, vowels, pitch, and voice quality. Compared to previously reported approaches, the proposed method results in subject-specific models that achieve over a 21% improvement in the estimation of subglottal pressure, as measured by root mean square error. These findings underscore the effectiveness of a non-linear, subject-specific regression approach in enhancing the estimation of subglottal pressure from neck-surface vibration signals.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Medical Laboratory Technology
Engineering, Biomedical
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ibarra, Emiro J. - Universidad Técnica Federico Santa María - Chile
2 Arias-Londono, Julian D. - Univ Politecn Madrid - España
Universidad Politécnica de Madrid - España
3 Godino-Llorente, Juan I. - Univ Politecn Madrid - España
Universidad Politécnica de Madrid - España
4 Mehta, Daryush D. - Harvard Med Sch - Estados Unidos
Harvard Medical School - Estados Unidos
5 ZANARTU-SALAS, MATIAS Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Ministerio de Economía y Competitividad
Fondo Nacional de Desarrollo Científico y Tecnológico
National Institutes of Health
Universidad Técnica Federico Santa María
Ministry of Economy and Competitiveness of Spain
Comunidad de Madrid
Universidad Politécnica de Madrid
National Institute on Deafness and Other Communication Disorders
Universidad Tecnica Federico Santa Maria, Chile
Comunidad de Madrid, Spain
ANID, Chile
Agencia Nacional de Investigación y Desarrollo
European Union-NextGenerationEU
National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders, United States
Universidad Politecnica de Madrid, Spain - European Union-NextGenerationEU, Spain

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was supported by the National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders, United States grant P50 DC015446, R21 DC015877 and R33 DC011588; by the Universidad Tecnica Federico Santa Maria, Chile grant DPP PIIC N degrees 020/2021; by ANID, Chile grants BASAL AFB240002, FONDECYT 1230828, and Beca de Doctorado Nacional 21190074. This work was also supported by the Ministry of Economy and Competitiveness of Spain under Grants PID2021-128469OB-I00 and TED2021-131688B-I00, and by Comunidad de Madrid, Spain. Julian D. Arias-Londono was supported by Universidad Politecnica de Madrid, Spain through a Maria Zambrano UP2021-035 grant funded by European Union-NextGenerationEU, Spain. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
This research was supported by the National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders grant P50 DC015446 , R21 DC015877 and R33 DC011588 ; by the Universidad T\u00E9cnica Federico Santa Mar\u00EDa grant DPP PIIC N\u00B0 020/2021 ; by ANID grants BASAL AFB240002 , FONDECYT 1230828 , and Beca de Doctorado Nacional 21190074 . This work was also supported by the Ministry of Economy and Competitiveness of Spain under Grants PID2021-128469OB-I00 and TED2021-131688B-I00 , and by Comunidad de Madrid, Spain . Juli\u00E1n D. Arias-Londo\u00F1o was supported by Universidad Polit\u00E9cncia de Madrid through a Mar\u00EDa Zambrano UP2021-035 grant funded by European Union-NextGenerationEU . The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
This research was supported by the National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders grant P50 DC015446 , R21 DC015877 and R33 DC011588 ; by the Universidad T\u00E9cnica Federico Santa Mar\u00EDa grant DPP PIIC N\u00B0 020/2021 ; by ANID grants BASAL AFB240002 , FONDECYT 1230828 , and Beca de Doctorado Nacional 21190074 . This work was also supported by the Ministry of Economy and Competitiveness of Spain under Grants PID2021-128469OB-I00 and TED2021-131688B-I00 , and by Comunidad de Madrid, Spain . Juli\u00E1n D. Arias-Londo\u00F1o was supported by Universidad Polit\u00E9cncia de Madrid through a Mar\u00EDa Zambrano UP2021-035 grant funded by European Union-NextGenerationEU . The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Muestra la fuente de financiamiento declarada en la publicación.