Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/ASIA.202401436 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs). This specific LMNC has recently attracted particular interest due to its luminescent response and characteristic photostability. Our study presents a wide characterization of the optical and morphologic features of the synthetized particles: plasmonic metal nanostructures and Au25GSH NCs through different experimental techniques including UV-Visible, IR, luminescent spectroscopies, along with TEM and AFM microscopies. Additionally, we have carried out computational simulations based on time-dependent density functional theory (TD-DFT) and classical electrodynamics simulation based on Mie Theory to support our experimental findings. In this study, we report up to 3-fold luminescence enhancement of Au25GSH NCs which is mainly attributed to slow dynamic SEF.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Jofre, Javiera | - |
Universidad de Chile - Chile
|
| 2 | Douglas-Gallardo, Oscar A. | - |
Universidad Austral de Chile - Chile
|
| 3 | Bachmann, Cristian | - |
Universidad Austral de Chile - Chile
|
| 4 | Danna, Caroline S. | - |
Universidad Austral de Chile - Chile
|
| 5 | Troncoso, Loreto | - |
Universidad Austral de Chile - Chile
|
| 6 | Pena-Bermudes, Maria | - |
Universidad de Chile - Chile
|
| 7 | Iberlucea-Salinas, Isadora | - |
Universidad de Chile - Chile
|
| 8 | Mendizabal, Fernando | - |
Universidad de Chile - Chile
|
| 9 | Osorio-Roman, Igor O. | - |
Universidad Austral de Chile - Chile
|
| 10 | Segura, Camilo | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |
| Millennium Scientific Initiative by ANID |
| Agradecimiento |
|---|
| This work was supported by FONDECYT Postdoctoral project 3220178. Fernando Mendizabal acknowledge to FONDECYT Regular project 1220087. Caroline S. Danna acknowledge to FONDECYT Iniciacion project 11231194. Loreto Troncoso and Caroline S. Danna thanks the project Millennium Institute on Green Ammonia as Energy Vector - MIGA (ICN2021_023) supported by the Millennium Scientific Initiative by ANID. Igor O. Osorio-Roman acknowledge to Ventekom company. |
| This work was supported by FONDECYT Postdoctoral project 3220178. Fernando Mendiz\u00E1bal acknowledge to FONDECYT Regular project 1220087. Caroline S. Danna acknowledge to FONDECYT Iniciaci\u00F3n project 11231194. Loreto Troncoso and Caroline S. Danna thanks the project Millennium Institute on Green Ammonia as Energy Vector \u2013 MIGA (ICN2021_023) supported by the Millennium Scientific Initiative by ANID. Igor O. Osorio\u2010Rom\u00E1n acknowledge to Ventekom company. |