Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S12671-025-02532-9 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
ObjectivesIncreasing dispositional mindfulness is the primary goal of all mindfulness-based interventions. However, it is not entirely clear which specific characteristics of meditation practice predict improvements in mindfulness. This is relevant for characterization of the participants as well as for intervention designs. In this study, we explored the predictive value of different self-report questions characterizing previous meditation experience over dispositional mindfulness, interpersonal mindfulness, and mental health.MethodUsing a cross-sectional design with a sample size of 1099 and machine learning, 28 questions (independent variables) characterizing meditation practice were used to predict 21 dependent variables distributed in three categories: dispositional mindfulness (eight variables), interpersonal mindfulness (five variables), and mental health (eight variables). We conducted variable screening using a conditional random forest algorithm to identify the five most relevant independent variables for each group of dependent variables.ResultsThe findings indicate that out of the 28 independent variables characterizing meditation practice, only five were significant predictors of the three categories of dependent variables. These predictors include the time lapse since starting meditation, practice frequency, the role assigned to meditation in daily life, the relation with meditation, and the ability to count the number of breaths without getting distracted.ConclusionsFive self-report questions in relation to meditation practice were reliable predictors of dispositional mindfulness, interpersonal mindfulness, and mental health. The results highlight the need for further exploration of how individuals' relationships with their meditation practice influence meditation outcomes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vergara, Rodrigo C. | - |
Universidad Metropolitana de Ciencias de la Educación - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile Centro Nacional de Inteligencia Artificial - Chile |
| 2 | Khoury, Bassam | Hombre |
MCGILL UNIV - Canadá
Université McGill - Canadá |
| 3 | Langer, alvaro I. | - |
Universidad San Sebastián - Chile
Millennium Nucleus Improve Mental Hlth Adolescents - Chile Núcleo Milenio para Mejorar la Salud Mental de Adolescentes y Jóvenes - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Social Sciences and Humanities Research Council of Canada |
| Agencia Nacional de Investigación y Desarrollo |
| ANID - Millennium Science Initiative Program |
| Centro Nacional de Inteligencia Artificial CENIA |
| Agencia Nacional de Investigacion y Desarrollo (ANID) through grant FONDECYT |
| Agradecimiento |
|---|
| Bassam Khoury was funded by the Social Sciences and Humanities Research Council of Canada (SSHRC # 430-2021-00078), AIL was supported by the Agencia Nacional de Investigacion y Desarrollo (ANID) through grant FONDECYT 1221034 and by ANID - Millennium Science Initiative Program - NCS2021_081 and ANID_FONDECYT_1221034, and Rodrigo C. Vergara by Centro Nacional de Inteligencia Artificial CENIA, FB210017, BASAL, ANID. |
| Bassam Khoury was funded by the Social Sciences and Humanities Research Council of Canada (SSHRC # 430\u20132021-00078), AIL was supported by the Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID) through grant FONDECYT 1221034 and by ANID \u2013 Millennium Science Initiative Program \u2013 NCS2021_081 and ANID_FONDECYT_1221034, and Rodrigo C. Vergara by Centro Nacional de Inteligencia Artificial CENIA, FB210017, BASAL, ANID. |