Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAMWA.2025.03.004 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose mixed finite element methods for the coupled Biot poroelasticity and Poisson-Nernst-Planck equations (modeling ion transport in deformable porous media). For the poroelasticity, we consider a primal-mixed, four-field formulation in terms of the solid displacement, the fluid pressure, the Darcy flux, and the total pressure. In turn, the Poisson-Nernst-Planck equations are formulated in terms of the electrostatic potential, the electric field, the ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation, posed in Banach spaces, exhibits the structure of a perturbed block-diagonal operator consisting of perturbed and generalized saddle-point problems for the Biot equations, a generalized saddle-point system for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst-Planck equations. One of the main novelties here is the well-posedness analysis, hinging on the Banach fixed-point theorem along with small data assumptions, the Babuska-Brezzi theory in Banach spaces, and a slight variant of recent abstract results for perturbed saddle-point problems, again in Banach spaces. The associated Galerkin scheme is addressed similarly, employing the Banach fixed-point theorem to yield discrete well-posedness. A priori error estimates are derived, and simple numerical examples validate the theoretical error bounds, and illustrate the performance of the proposed schemes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gatica, Gabriel N. | - |
Universidad de Concepción - Chile
|
| 2 | Inzunza, Cristian | - |
Universidad de Concepción - Chile
Universidad Católica de la Santísima Concepción - Chile |
| 3 | Ruiz-Baier, Ricardo | - |
MONASH UNIV - Australia
Sechenov First Moscow State Med Univ - Rusia Universidad Adventista de Chile - Chile Monash University - Australia Sechenov First Moscow State Medical University - Rusia |
| Fuente |
|---|
| Universidad de Concepción |
| Australian Research Council |
| Centro de Investigación en Ingeniería Matemática |
| CI 2 MA |
| National Computational Infrastructure |
| ANID-Chile |
| Anillo of Computational Mathematics for Desalination Processes |
| ANID-Chile through Centro de Modelamiento Matematico |
| Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas |
| Centro de Investigacion en Ingenieria Matematica (CI2MA) , Universidad de Concepcion |
| Australian Government through the National Computational Infrastructure (NCI) under the ANU Merit Allocation Scheme (ANUMAS) |
| Agradecimiento |
|---|
| This work was partially supported by ANID-Chile through CENTRO DE MODELAMIENTO MATEMATICO (FB210005) , and ANILLO OF COMPUTATIONAL MATHEMATICS FOR DESALINATION PROCESSES (ACT210087) ; by Centro de Investigacion en Ingenieria Matematica (CI2MA) , Universidad de Concepcion; and by The Australian Research Council through the FUTURE FELLOWSHIP grant FT220100496 and DISCOVERY PROJECT grant DP22010316. HPC resources were funded by the Australian Government through the National Computational Infrastructure (NCI) under the ANU Merit Allocation Scheme (ANUMAS) . |
| This work was partially supported by ANID-Chile through Centro de Modelamiento Matem\u00E1tico (FB210005), and Anillo of Computational Mathematics for Desalination Processes (ACT210087); by Centro de Investigaci\u00F3n en Ingenier\u00EDa Matem\u00E1tica (CI 2 MA), Universidad de Concepci\u00F3n; and by the Australian Research Council through the Future Fellowship grant FT220100496 and Discovery Project grant DP22010316. HPC resources were funded by the Australian Government through the National Computational Infrastructure (NCI) under the ANU Merit Allocation Scheme (ANUMAS). |