Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00030-025-01038-6 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this article we study a coupled system of differential equations with Allen-Cahn type non-linearity. Motivated by physical phenomena one of the unknowns in the system is accompanied by a singular perturbation parameter epsilon 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon <^>2$$\end{document}. By employing variational techniques, we establish the existence of solutions for all values of epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and get results on their qualitative properties, including regularity. Additionally, we analyse the behaviour of solutions as epsilon -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}, demonstrating their pointwise convergence to the solution of the problem for epsilon=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =0$$\end{document}. We establish the uniqueness of this solution modulo translations. Additionally, in the final section, through an appropriate change of scale, we relate this problem and the second Painlev & eacute; equation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Monreal, Javier | - |
Universidad de Chile - Chile
|
| 2 | Kowalczyk, Michal | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| ANID |
| ANID projects |
| ANID doctoral fund |
| Agradecimiento |
|---|
| The first author was supported by FONDECYT Grants 1210405 and ANID doctoral fund 21242106. The second author was supported by research Grants FONDECYT 1210405 andANID Projects ACE210010 and FB210005 |
| The first author was supported by FONDECYT Grants 1210405 and ANID doctoral fund 21242106. The second author was supported by research Grants FONDECYT 1210405 and ANID Projects ACE210010 and FB210005. |