Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine Learning in Sustainable Agriculture: Systematic Review and Research Perspectives
Indexado
WoS WOS:001429737000001
Scopus SCOPUS_ID:85218857459
DOI 10.3390/AGRICULTURE15040377
Año 2025
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Machine learning (ML) has revolutionized resource management in agriculture by analyzing vast amounts of data and creating precise predictive models. Precision agriculture improves agricultural productivity and profitability while reducing costs and environmental impact. However, ML implementation faces challenges such as managing large volumes of data and adequate infrastructure. Despite significant advances in ML applications in sustainable agriculture, there is still a lack of deep and systematic understanding in several areas. Challenges include integrating data sources and adapting models to local conditions. This research aims to identify research trends and key players associated with ML use in sustainable agriculture. A systematic review was conducted using the PRISMA methodology by a bibliometric analysis to capture relevant studies from the Scopus and Web of Science databases. The study analyzed the ML literature in sustainable agriculture between 2007 and 2025, identifying 124 articles that meet the criteria for certainty assessment. The findings show a quadratic polynomial growth in the publication of articles on ML in sustainable agriculture, with a notable increase of up to 91% per year. The most productive years were 2024, 2022, and 2023, demonstrating a growing interest in the field. The study highlights the importance of integrating data from multiple sources for improved decision making, soil health monitoring, and understanding the interaction between climate, topography, and soil properties with agricultural land use and crop patterns. Furthermore, ML in sustainable agriculture has evolved from understanding weather data to integrating advanced technologies like the Internet of Things, remote sensing, and smart farming. Finally, the research agenda highlights the need for the deepening and expansion of predominant concepts, such as deep learning and smart farming, to develop more detailed and specialized studies and explore new applications to maximize the benefits of ML in agricultural sustainability.

Revista



Revista ISSN
Agriculture (Switzerland) 2077-0472

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Agronomy
Scopus
Agronomy And Crop Science
Plant Science
Food Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Botero-Valencia, Juan Hombre Inst Tecnol Metropolitano ITM - Colombia
Instituto Tecnológico Metropolitano - Colombia
2 Garcia-Pineda, Vanessa - Inst Tecnol Metropolitano ITM - Colombia
Instituto Tecnológico Metropolitano - Colombia
3 Valencia-Arias, Alejandro - Universidad Arturo Prat - Chile
4 Valencia, Jackeline - Univ Ricardo Palma - Perú
Universidad Ricardo Palma - Perú
5 Reyes-Vera, Erick - Inst Tecnol Metropolitano ITM - Colombia
Instituto Tecnológico Metropolitano - Colombia
6 Mejia-Herrera, Mateo - Inst Tecnol Metropolitano ITM - Colombia
Instituto Tecnológico Metropolitano - Colombia
7 Hernandez-Garcia, Ruber - Universidad Católica del Maule - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Project titled "Diversificacion de fuentes de proteinas para uso alimentario mediante el empleo de terrazas de cultivo aeroponicas o hidroponicas, integradas con sistemas automatizados, inteligencia artificial y energia renovable para la creacion de comuni

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work has been carried out under contract RC130-2024, corresponding to project code 10922, titled "Diversificacion de fuentes de proteinas para uso alimentario mediante el empleo de terrazas de cultivo aeroponicas o hidroponicas, integradas con sistemas automatizados, inteligencia artificial y energia renovable para la creacion de comunidades autosostenibles".

Muestra la fuente de financiamiento declarada en la publicación.