Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Learning holographic horizons
Indexado
WoS WOS:001415430000016
Scopus SCOPUS_ID:85216100664
DOI 10.1103/PHYSREVD.111.026016
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We apply machine learning to understand fundamental aspects of holographic duality, specifically the entropies obtained from the apparent and event horizon areas. We show that simple features of only the time series of the pressure anisotropy, namely the values and half-widths of the maxima and minima, the times these are attained, and the times of the first zeroes can predict the areas of the apparent and event horizons in the dual bulk geometry at all times with a fixed maximum length (10) of the input vector. We also argue that the entropy functions are the measures of information that need to be extracted from simple one-point functions to reconstruct specific aspects of correlation functions of the dual state with the best possible approximations.

Revista



Revista ISSN
Physical Review D 2470-0010

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Astronomy & Astrophysics
Physics, Particles & Fields
Scopus
Physics And Astronomy (Miscellaneous)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Jejjala, Vishnu - Univ Witwatersrand - República de Sudáfrica
University of the Witwatersrand, Johannesburg - República de Sudáfrica
2 Mondkar, Sukrut - A CI Homi Bhabha Natl Inst - India
Homi Bhabha Natl Inst - India
Harish Chandra Research Institute - India
Homi Bhabha National Institute - India
3 Mukhopadhyay, Ayan - Pontificia Universidad Católica de Valparaíso - Chile
4 Raj, Rishi - Sorbonne Univ - Francia
CNRS - Francia
Sorbonne Université - Francia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Research Foundation
EPSRC
Engineering and Physical Sciences Research Council
Department of Science and Innovation
South African Research Chairs Initiative of the Department of Science and Innovation
Isaac Newton Institute for Mathematical Sciences
Ministry of Education, India
Ministry of Education of India

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We are grateful to Jessica Craven, Koji Hashimoto, Shivaprasad Hulyal, Dileep Jatkar, Lata Joshi, Arjun Kar, Tanay Kibe, David Mateos, and Harald Skarke for enlightening discussions on this and related work. We acknowledge the High-Performance Scientific Computing facility of the Harish-Chandra Research Institute, where we generated most of the data used for training and testing our neural networks. We thank the organizers and participants of String Data 2022, where aspects of this work were presented. V. J. is supported by the South African Research Chairs Initiative of the Department of Science and Innovation and the National Research Foundation. V. J. would also like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the program " Black holes: bridges between number theory and holographic quantum information " during which work on this paper transpired; this work was supported by EPSRC Grant No. EP/R014604/1. The research of A. M. was partly supported by the center of excellence grants of the Ministry of Education of India.
We are grateful to Jessica Craven, Koji Hashimoto, Shivaprasad Hulyal, Dileep Jatkar, Lata Joshi, Arjun Kar, Tanay Kibe, David Mateos, and Harald Skarke for enlightening discussions on this and related work. We acknowledge the High-Performance Scientific Computing facility of the Harish-Chandra Research Institute, where we generated most of the data used for training and testing our neural networks. We thank the organizers and participants of String Data 2022, where aspects of this work were presented. V.\u2009J. is supported by the South African Research Chairs Initiative of the Department of Science and Innovation and the National Research Foundation. V.\u2009J. would also like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the program \u201CBlack holes: bridges between number theory and holographic quantum information\u201D during which work on this paper transpired; this work was supported by EPSRC Grant No. EP/R014604/1. The research of A.\u2009M. was partly supported by the center of excellence grants of the Ministry of Education of India.

Muestra la fuente de financiamiento declarada en la publicación.