Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1145/3704912 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Proof assistants based on dependent type theory, such as Coq, Lean and Agda, use different universes to classify types, typically combining a predicative hierarchy of universes for computationally-relevant types, and an impredicative universe of proof-irrelevant propositions. In general, a universe is characterized by its sort, such as Type or Prop, and its level, in the case of a predicative sort. Recent research has also highlighted the potential of introducing more sorts in the type theory of the proof assistant as a structuring means to address the coexistence of different logical or computational principles, such as univalence, exceptions, or definitional proof irrelevance. This diversity raises concrete and subtle issues from both theoretical and practical perspectives. In particular, in order to avoid duplicating definitions to inhabit all (combinations of) universes, some sort of polymorphism is needed. Universe level polymorphism is well-known and effective to deal with hierarchies, but the handling of polymorphism between sorts is currently ad hoc and limited in all major proof assistants, hampering reuse and extensibility. This work develops sort polymorphism and its metatheory, studying in particular monomorphization, large elimination, and parametricity. We implement sort polymorphism in Coq and present examples from a new sort-polymorphic prelude of basic definitions and automation. Sort polymorphism is a natural solution that effectively addresses the limitations of current approaches and prepares the ground for future multi-sorted type theories.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Poiret, Josselin | - |
Nantes Univ - Francia
INRIA - Francia Nantes Université - Francia INRIA Institut National de Recherche en Informatique et en Automatique - Francia |
| 2 | Gilbert, Gaetan | - |
INRIA - Francia
INRIA Institut National de Recherche en Informatique et en Automatique - Francia |
| 3 | Maillard, Kenji | - |
INRIA - Francia
INRIA Institut National de Recherche en Informatique et en Automatique - Francia |
| 4 | Pedrot, Pierre-Marie | - |
INRIA - Francia
INRIA Institut National de Recherche en Informatique et en Automatique - Francia |
| 4 | Pédrot, Pierre Marie | - |
INRIA Institut National de Recherche en Informatique et en Automatique - Francia
|
| 5 | Sozeau, Matthieu | - |
INRIA - Francia
INRIA Institut National de Recherche en Informatique et en Automatique - Francia |
| 6 | Tabareau, Nicolas | Hombre |
INRIA - Francia
INRIA Institut National de Recherche en Informatique et en Automatique - Francia |
| 7 | Tanter., Eric | - |
Universidad de Chile - Chile
|
| Agradecimiento |
|---|
| The authors would like to thank the anonymous referees for their valuable comments and helpful suggestions. E. Tanter is partially funded by the Millennium Science Initiative Program: code ICN17_002. This work was supported by the Inria Equipe Associee GRAPA. |
| The authors would like to thank the anonymous referees for their valuable comments and helpful suggestions. \u00C9. Tanter is partially funded by the Millennium Science Initiative Program: code ICN17_002. This work was supported by the Inria \u00C9quipe Associ\u00E9e GRAPA. |