Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/BUILDINGS15030410 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The construction industry is increasingly adopting artificial intelligence (AI) to enhance productivity and safety, with object detection in visual data serving as a vital tool. However, developing robust object detection models demands extensive, high-quality datasets, which are often difficult to generate and maintain in construction due to the dynamic and complex nature of job sites. This paper presents an innovative approach to automating dataset generation using robotic process automation (RPA) and generative AI techniques, specifically, DALL-E 2. This approach not only accelerates dataset creation but also improves model performance by delivering balanced, high-quality inputs. To validate the proposed methodology, a case study of a building construction site is conducted. In this study, three commonly used convolutional neural network architectures-RetinaNet, Faster R-CNN, and YOLOv5-are trained with the artificially generated dataset to automate the identification of formworks and rebars during construction.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Araya-Aliaga, Erik | - |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | Atencio, Edison | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 3 | Lozano, Fidel | - |
Univ Castilla La Mancha - España
Universidad de Castilla-La Mancha - España |
| 4 | Lozano-Galant, Jose | - |
Univ Castilla La Mancha - España
Universidad de Castilla-La Mancha - España |
| Fuente |
|---|
| Ministerio de Economía y Competitividad |
| Federación Española de Enfermedades Raras |
| FEDER funds-A Way to Make Europe and Spanish Ministry of Economy and Competitiveness |
| FEDER funds-A Way to Make Europe |
| Agradecimiento |
|---|
| The authors are indebted to the projects PID2021-126405OB-C31 and PID2021-126405OB-C32 funded by FEDER funds-A Way to Make Europe and Spanish Ministry of Economy and Competitiveness MICIN/AEI/10.13039/501100011033/. |
| The authors are indebted to the projects PID2021-126405OB-C31 and PID2021-126405OB-C32 funded by FEDER funds\u2014A Way to Make Europe and Spanish Ministry of Economy and Competitiveness MICIN/AEI/10.13039/501100011033/. |