Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Multimodal Alzheimer’s disease classification through ensemble deep random vector functional link neural network
Indexado
WoS WOS:001417420500002
Scopus SCOPUS_ID:85214315935
DOI 10.7717/PEERJ-CS.2590
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Alzheimer's disease (AD) is a condition with a complex pathogenesis, sometimes hereditary, characterized by the loss of neurons and synapses, along with the presence of senile plaques and neurofibrillary tangles. Early detection, particularly among individuals at high risk, is critical for effective treatment or prevention, yet remains challenging due to data variability and incompleteness. Most current research relies on single data modalities, potentially limiting comprehensive staging of AD. This study addresses this gap by integrating multimodal data-including clinical and genetic information-using deep learning (DL) models, with a specific focus on random vector functional link (RVFL) networks, to enhance early detection of AD and mild cognitive impairment (MCI). Our findings demonstrate that ensemble deep RVFL (edRVFL) models, when combined with effective data imputation techniques such as Winsorized-mean (Wmean), achieve superior performance in detecting early stages of AD. Notably, the edRVFL model achieved an accuracy of 98.8%, precision of 98.3%, recall of 98.4%, and F1-score of 98.2%, outperforming traditional machine learning models like support vector machines, random forests, and decision trees. This underscores the importance of integrating advanced imputation strategies and deep learning techniques in AD diagnosis.

Revista



Revista ISSN
2376-5992

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Theory & Methods
Computer Science, Information Systems
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Henriquez, Pablo A. - Universidad Diego Portales - Chile
2 Araya, Nicolas - Universidad Diego Portales - Chile
Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID Fondecyt
Chilean National Agency for Research and Development (ANID)
Agencia Nacional de Investigación y Desarrollo
ANID FONDECYT Iniciacion Grant

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the Chilean National Agency for Research and Development (ANID) through ANID/PIA/ANILLOS ACT210096; ANID FONDECYT Iniciacion Grant 11230396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
This work was supported by the Chilean National Agency for Research and Development (ANID) through ANID/PIA/ANILLOS ACT210096; ANID FONDECYT Iniciaci\u00F3n Grant 11230396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Muestra la fuente de financiamiento declarada en la publicación.