Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1038/S41598-023-37868-6 | ||
| Año | 2023 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Coronary artery tortuosity is usually an undetected condition in patients undergoing coronary angiography. This condition requires a longer examination by the specialist to be detected. Yet, detailed knowledge of the morphology of coronary arteries is essential for planning any interventional treatment, such as stenting. We aimed to analyze coronary artery tortuosity in coronary angiography with artificial intelligence techniques to develop an algorithm capable of automatically detecting this condition in patients. This work uses deep learning techniques, in particular, convolutional neural networks, to classify patients into tortuous or non-tortuous based on their coronary angiography. The developed model was trained both on left (Spider) and right (45 & DEG;/0 & DEG;) coronary angiographies following a fivefold cross-validation procedure. A total of 658 coronary angiographies were included. Experimental results demonstrated satisfactory performance of our image-based tortuosity detection system, with a test accuracy of (87 & PLUSMN; 6)%. The deep learning model had a mean area under the curve of 0.96 & PLUSMN; 0.03 over the test sets. The sensitivity, specificity, positive predictive values, and negative predictive values of the model for detecting coronary artery tortuosity were (87 & PLUSMN; 10)%, (88 & PLUSMN; 10)%, (89 & PLUSMN; 8)%, and (88 & PLUSMN; 9)%, respectively. Deep learning convolutional neural networks were found to have comparable sensitivity and specificity with independent experts' radiological visual examination for detecting coronary artery tortuosity for a conservative threshold of 0.5. These findings have promising applications in the field of cardiology and medical imaging.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cobo, Miriam | - |
CSIC UC - España
|
| 2 | Perez-Rojas, Francisco | - |
Universidad Católica del Maule - Chile
Univ Oviedo - España |
| 3 | Gutierrez-Rodriguez, Constanza | - |
Universidad Autónoma de Chile - Chile
|
| 4 | Heredia, Ignacio | Hombre |
CSIC UC - España
|
| 5 | Maragano-Lizama, Patricio | - |
Talca Reg Hosp - Chile
|
| 6 | Yung-Manriquez, Francisca | - |
Universidad Autónoma de Chile - Chile
|
| 7 | Iglesias, L. Lloret | Mujer |
CSIC UC - España
|
| 8 | Vega, Jose A. | - |
Univ Oviedo - España
Universidad Autónoma de Chile - Chile |
| Fuente |
|---|
| Universidad Autónoma de Chile |
| DEEP-HybridDataCloud H2020 project |
| Institute of Physics of Cantabria (IFCA) by the European Commission - NextGenerationEU, through CSIC's Global Health Platform ("PTI Salud Global") |
| Universidad de Cantabria and Consejeria de Universidades, Igualdad, Cultura y Deporte del Gobierno de Cantabria via the "Instrumentacion y ciencia de datos para sondear la naturaleza del universo" project |
| Consejo Superior de Investigaciones Cientficas (CSIC) |
| Advanced Computing and e-Science group at the Institute of Physics of Cantabria (IFCA-CSIC-UC) |
| Agradecimiento |
|---|
| M. C. acknowledges support from Consejo Superior de Investigaciones Cientificas (CSIC) and Institute of Physics of Cantabria (IFCA) given by the European Commission - NextGenerationEU, through CSIC's Global Health Platform ("PTI Salud Global"). The authors acknowledge support from Universidad Autonoma de Chile. We also acknowledge the support from the Advanced Computing and e-Science group at the Institute of Physics of Cantabria (IFCA-CSIC-UC) and from the DEEP-HybridDataCloud H2020 project (Grant Agreement 777435). I. H. acknowledges support from Universidad de Cantabria and Consejeria de Universidades, Igualdad, Cultura y Deporte del Gobierno de Cantabria via the "Instrumentacion y ciencia de datos para sondear la naturaleza del universo" project. |