Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Network Size Estimation for Direct-to-Satellite IoT
Indexado
WoS WOS:000966399000001
DOI 10.1109/JIOT.2022.3224678
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The worldwide adoption of the Internet of Things (IoT) depends on the massive deployment of sensor nodes and timely data collection. However, installing the required ground infrastructure in remote or inaccessible areas can be economically unattractive or unfeasible. Cost-effective nanosatellites deployed in low Earth orbits (LEOs) are emerging as an alternative solution: on-board IoT gateways provide access to remote IoT devices, according to direct-to-satellite IoT (DtS-IoT) architectures. One of the main challenges of DtS-IoT is to devise communication protocols that scale to thousands of highly constrained devices served by likewise constrained orbiting gateways. In this article, we tackle this issue by first estimating the (varying) size of the device set underneath the (mobile) nanosatellite footprint. Then, we demonstrate the applicability of the estimation when used to intelligently throttle DtS-IoT access protocols. Since recent works have shown that MAC protocols improve the throughput and energy efficiency of a DtS-IoT network when a network size estimation is available, we present, here, a novel and computationally efficient network size estimator in DtS-IoT: our optimistic collision information (OCI)-based estimator. We evaluate OCI's effectiveness with extensive simulations of DtS-IoT scenarios. Results show that when using network size estimations, the scalability of a frame-slotted Aloha-based DtS-IoT network is boosted eightfold, serving up to 4x10(3) devices, without energy efficiency penalties. We also show the effectiveness of the OCI mechanism given realistic detection ratios and demonstrate its low computational cost implementation, making it a strong candidate for network estimation in DtS-IoT.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Information Systems
Computer Networks And Communications
Computer Science Applications
Signal Processing
Hardware And Architecture
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Parra, Pablo Ilabaca - Universidad de Chile - Chile
Concordia Univ - Canadá
2 Montejo-Sanchez, Samuel - Universidad Tecnológica Metropolitana - Chile
3 Fraire, Juan A. Hombre Univ Lyon - Francia
Argentinian Res Council CONICET - Argentina
Saarland Univ - Alemania
4 Souza, Richard D. Hombre Fed Univ Santa Catarina UFSC - Brasil
5 CESPEDES-UMANA, SANDRA LORENA Mujer Universidad de Chile - Chile
Concordia Univ - Canadá

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDEQUIP
ANID FONDECYT INICIACION
ANID Basal Project
project ANID FONDECYT
CNPq Brazil under Grant
Project STARS STICAMSUD 21-STIC-12 under Grant

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Project ANID Fondecyt under Grant 1201893; in part by the ANID Basal Project under Grant FB0008; in part by the ANID FONDECYT Iniciacion under Grant 11200659; in part by FONDEQUIP under Grant EQM180180; in part by the Project STARS STICAMSUD 21-STIC-12 under Grant STIC2020003; and in part by CNPq Brazil under Grant 402378/2021-0 and Grant 305021/2021-4.

Muestra la fuente de financiamiento declarada en la publicación.