Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Online Internet Traffic Measurement and Monitoring Using Spark Streaming
Indexado
WoS WOS:000428054305110
Scopus SCOPUS_ID:85046396574
DOI 10.1109/GLOCOM.2017.8255000
Año 2017
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Due to the explosive growth of Internet traffic, network operators must be able to monitor the whole network situations and manage their network resources in an efficient way. Traditional network analysis method that works on a single machine are no longer suitable for this huge traffic data due to its poor processing ability. Some big data frameworks, such as Hadoop and Spark, can handle such analysis job even for large network traffic, but they are inherently designed for offline data analysis. In this paper, we treat the online network analysis as a stream analysis problem and use Spark Streaming to cope with the high-speed Internet traffic data in real time. The system consists of two parts, collector and stream processor. Firstly, several collectors capture network traffic data from switches through mirrored ports and send the packet information to a central stream processor which is a cluster running Spark Streaming. Then, the stream processor analyzes the input data streams and calculates Internet performance metrics. We take TCP performance monitoring as an example to show how network measurement can be done using the stream processing platform. Finally, we conducted typical experiments in a cluster of 3 computers with the standalone mode, showing that our system performs well in huge Internet traffic measurement and monitoring.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zhou, Baojun - UNIV TSUKUBA - Japón
University of Tsukuba - Japón
2 Li, Jie - UNIV TSUKUBA - Japón
University of Tsukuba - Japón
3 Guo, Song - Hong Kong Polytech Univ - China
Hong Kong Polytechnic University - Hong Kong
4 Wu, Jinsong - Universidad de Chile - Chile
5 Hu, Yongqiang - Inst Sci & Tech Informat Qinghai Prov - China
Institute of Scientific and Technical Information of Qinghai Province - China
6 Zhu, Lihua - Inst Sci & Tech Informat Qinghai Prov - China
Institute of Scientific and Technical Information of Qinghai Province - China
7 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Japan Society for the Promotion of Science
Japan Society for Promotion of Science (JSPS)
Qinghai Joint Research Grant
NII, Japan
National Institute of Informatics

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work has been partially supported by Grant-in-Aid for Scientific Research from Japan Society for Promotion of Science (JSPS), Qinghai Joint Research Grant (no. 2016-HZ-804), and Research Collaboration Grant from NII, Japan.
This work has been partially supported by Grant-in-Aid for Scientific Research from Japan Society for Promotion of Science (JSPS), Qinghai Joint Research Grant (no. 2016-HZ-804), and Research Collaboration Grant from NII, Japan.

Muestra la fuente de financiamiento declarada en la publicación.