Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-3-031-76607-7_7 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Hyperbolic space has emerged as a promising alternative to Euclidean space for embedding high-dimensional data, including images. In particular, Hyperbolic embeddings have shown to be more effective in discovering hierarchical relationships between data points. However, experiments performed thus far have provided the model with explicit access to this hierarchy during training. This work shows Poincaré embeddings’ ability to discover class-subclass relationships in image datasets without direct supervision. In addition, we present applications of this result to content-based image retrieval, demonstrating that Poincaré embeddings can achieve better performance when the relevance of the retrieved elements is measured by taking the class hierarchy into account. Furthermore, we found that Hyperbolic embeddings outperform their Euclidean counterpart for complex class hierarchies. Finally, we discuss the limitations of these results and outline future research directions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Roberts, Ian | - |
Universidad Técnica Federico Santa María - Chile
|
| 2 | ARAYA-LOPEZ, MAURICIO ALEJANDRO | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Ñanculef, Ricardo | - |
Universidad Técnica Federico Santa María - Chile
|
| 4 | Mallea, Mario | - |
Universitat Politècnica de Catalunya - España
|
| Fuente |
|---|
| Agencia Nacional de Investigación y Desarrollo |
| National Agency for Research and Development |