Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Intelligent fault diagnosis for tribo-mechanical systems by machine learning: Multi-feature extraction and ensemble voting methods
Indexado
Scopus SCOPUS_ID:85207899096
DOI 10.1016/J.KNOSYS.2024.112694
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Timely fault detection is crucial for preventing issues like worn clutch plates and excessive friction material degradation, enhancing fuel efficiency, and prolonging clutch lifespan. This study focuses on early fault diagnosis in dry friction clutch systems using machine learning (ML) techniques. Vibration data is analyzed under different load and fault conditions, extracting statistical, histogram, and auto-regressive moving average (ARMA) features. Feature selection employs the J48 decision tree algorithm, evaluated with eight ML classifiers: support vector machines (SVM), k-nearest neighbor (kNN), linear model tree (LMT), random forest (RF), multilayer perceptron (MLP), logistic regression (LR), J48, and Naive Bayes. The evaluation revealed that individual classifiers achieved the highest testing accuracies with statistical feature selection as 83% for both MLP and LR at no load, 90% for MLP at 5 kg, and 93% for KNN at 10 kg. For histogram feature selection, KNN and MLP both reached 85% at no load, MLP achieved 91% at 5 kg, and RF attained 97% at 10 kg. With ARMA feature selection, KNN reached 93% at no load, LR achieved 94% at 5 kg, and RF reached 86% at 10 kg. The voting strategy notably improved these results, with the RF-KNN-J48 ensemble reaching 98% for histogram features at 10 kg, the KNN-LMT-RF ensemble achieving 94% for ARMA features at no load, and the SVM-MLP-LMT ensemble attaining 95% for ARMA features at 5 kg. Hence, a combination of three classifiers using the majority voting rule consistently outperforms standalone classifiers, striking a balance between diversity and complexity, facilitating robust decision-making. In practical applications, selecting the optimal combination of feature selection method and classifier is vital for accurate fault classification. This study provides valuable guidance for engineers and practitioners implementing robust load classification systems in industrial settings.

Revista



Revista ISSN
Knowledge Based Systems 0950-7051

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Scopus
Artificial Intelligence
Software
Management Information Systems
Information Systems And Management
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Shandhoosh, V. - Vellore Institute of Technology, Chennai - India
2 Venkatesh S, Naveen - Luleá University of Technology - Suecia
3 Chakrapani, Ganjikunta - Vellore Institute of Technology, Chennai - India
4 Sugumaran, V. - Vellore Institute of Technology, Chennai - India
5 Ramteke, Sangharatna M. - Pontificia Universidad Católica de Chile - Chile
6 Marian, Max - Pontificia Universidad Católica de Chile - Chile
Gottfried Wilhelm Leibniz Universität Hannover - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Pontificia Universidad Católica de Chile
FONDECYT de postdoctorado
ANID-Chile
Schaeffler FAG Foundation

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
S. Ramteke and M. Marian kindly acknowledge the financial support given by ANID-Chile within the project Fondecyt de Postdoctorado N\u00B0 3230027.M. Marian greatly acknowledges the financial support from the Vicerrector\u00EDa Acad\u00E9mica (VRA) of the Pontificia Universidad Cat\u00F3lica de Chile within the Programa de Inserci\u00F3n Acad\u00E9mica (PIA) as well as from Schaeffler FAG Foundation within the Future Technology Award 2022.
S. Ramteke and M. Marian kindly acknowledge the financial support given by ANID-Chile within the project Fondecyt de Postdoctorado N\u00B0 3230027 .

Muestra la fuente de financiamiento declarada en la publicación.