Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-1-0716-4260-3_16 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this chapter, we describe a step-by-step implementation of an automated anatomical MRI feature extractor based on artificial intelligence machine learning for classification. We applied the DenseNet—a state-of-the-art convolutional neural network producing more robust results than previous deep learning network architectures—to data from male (n = 400) and female (n = 400), age-, and education- matched healthy adult subjects. Moreover, we illustrate how an occlusion sensitivity analysis provides meaningful insights about the relevant information that the neural network used to make accurate classifications. This addresses the “black-box” limitations inherent in many deep learning implementations. The use of this approach with a specific dataset demonstrates how future implementations can use raw MRI scans to study a range of outcome measures, including neurological and psychiatric disorders.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Moguilner, Sebastian | - |
Universidad Adolfo Ibáñez - Chile
Universidad de San Andrés - Argentina Massachusetts General Hospital - Estados Unidos |
| 2 | Ibañez, Agustin | - |
Universidad Adolfo Ibáñez - Chile
Universidad de San Andrés - Argentina Consejo Nacional de Investigaciones Científicas y Técnicas - Argentina University of California, San Francisco - Estados Unidos Trinity College Dublin - Irlanda |