Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Multi-label learning on low label density sets with few examples
Indexado
WoS WOS:001435280300001
Scopus SCOPUS_ID:85211108205
DOI 10.1016/J.ESWA.2024.125942
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Multi-label learning has experienced an immense growth in the last years due to the multiple real-life applications to which it is applicable, such as the classification of protein functions, or musical genres, among others. This has led to the proposal of categories for multi-label classification (MLC) problems that seek to establish guidelines for the different configurations, given either by the quality or quantity of the labels, the number of examples for training, etc. Such is the case for the class of problems known as “Challenging MLC”, those in which the universe of labels incorporates obstacles either in terms of quality (erroneously assigned labels, unseen labels, etc.) or quantity (thousands or millions of labels). Different methods have been developed to address these cases, and yet few efforts have been directed towards the case where, despite having a large label universe, the number of examples is small (of the same order as the labels), thus posing a more complex scenario. In this paper, we examine one important real-world problem case — the labeling of Geometric surface patterns, appearing on pottery objects from the Classical era. As we will show, existing methods from the state of the art can provide baseline performance, but cannot yet comprehensively address this and similar application problems. We present and encompassing experimental comparison of state of the art methods, detailing advantages and problems. We contribute a processing pipeline that allows us to achieve effective classifications. Our work addresses the importance case when the universe of labels admits a feasible simplification through natural language processing (NLP) techniques and augmentation of visual training data. Based on an in-depth analysis of results, we propose practical guidelines on how to face similar problems, regarding both the selection of techniques and the analysis of results. We also identify pressing issues for current research to make multi-labeling more widely applicable and functional.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Vergara, Matías - Universidad de Chile - Chile
2 BUSTOS-CARDENAS, BENJAMIN EUGENIO Hombre Universidad de Chile - Chile
3 SIPIRAN-MENDOZA, IVAN ANSELMO Hombre Universidad de Chile - Chile
4 Schreck, Tobias Hombre Technische Universitat Graz - Austria
Graz Univ Technol - Austria
5 Lengauer, Stefan Hombre Technische Universitat Graz - Austria
Graz Univ Technol - Austria

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
ANID-Fondecyt
ANID-Millennium Science Initiative Program

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was funded by ANID - FONDECYT - Project 1230448, and by ANID - Millennium Science Initiative Program - Code ICN17_002.
This work was funded by ANID-FONDECYT-Project 1230448, and by ANID-Millennium Science Initiative Program-Code ICN17_002.

Muestra la fuente de financiamiento declarada en la publicación.