Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-3-031-76604-6_5 | ||
| Año | 2025 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Palm vein-based biometric identification offers a higher level of security than traditional methods such as fingerprinting, iris, or facial recognition. One of its main advantages lies in using internal body features, which makes it highly secure and less susceptible to external changes. However, its large-scale application is limited by the need for large-scale public databases. In this context, synthetic palm vein image databases partially address this challenge, as there will always be a difference between synthetic and real. To mitigate these gaps, we propose to evaluate the differences using a spectral perspective and present techniques to fit the magnitude spectrum and power spectral distribution. We evaluated the similarity of the resulting synthetic images to the real images from the most representative state-of-the-art palm vein databases. The proposed approaches help to reduce the difference between synthetic and real images from the CASIA database, improving the accuracy in the representation of synthetic palm veins for the evaluation of biometric recognition algorithms.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Clarke, Colton | - |
University of Victoria - Canadá
Universidad Católica del Maule - Chile |
| 2 | Salazar-Jurado, Edwin H. | Hombre |
Universidad Católica del Maule - Chile
|
| 3 | Hernandez-Garcia, Ruber | - |
Universidad Católica del Maule - Chile
|
| Fuente |
|---|
| Agencia Nacional de Investigación y Desarrollo |
| Ministerio de Ciencia, Tecnología, Conocimiento e Innovación |
| Idiap Research Institute |
| Institute of Automation, Chinese Academy of Sciences |
| Laboratory of Technological Research in Pattern Recognition |
| Agradecimiento |
|---|
| This work was partially funded by Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID), Ministerio de Ciencia, Tecnolog\u00EDa, Conocimiento e Innovaci\u00F3n, Gobierno de Chile, Research Project ANID FONDECYT Iniciaci\u00F3n en Investigaci\u00F3n 2022, Grant number No. 11220693. The authors also thank the research project ANID Subdirecci\u00F3n de Investigaci\u00F3n Aplicada/Concurso IDeA I+D ID23i10242 and the Laboratory of Technological Research in Pattern Recognition. Portions of the research in this paper used the CASIA-MS-PalmprintV1 collected by the Chinese Academy of Sciences\u2019 Institute of Automation (CASIA). Portions of the research in this paper used the VERA-Palmvein Corpus made available by the Idiap Research Institute, Martigny, Switzerland. |