Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A novel data-driven framework for driving range prognostics in electric vehicles
Indexado
WoS WOS:001401517600001
Scopus SCOPUS_ID:85213831730
DOI 10.1016/J.ENGAPPAI.2024.109925
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Electric vehicle (EV) driving range prediction is crucial for enhancing EV adoption and mitigating range anxiety among drivers. Despite advancements in battery technology, accurately estimating the remaining driving range under varying conditions remains a significant challenge. To address this, we propose a novel approach capable of prognosticating the Maximum Driving Range (MDR) an EV can achieve. Our method intelligently segments routes and integrates machine learning with physics-based models to predict vehicle speed, energy consumption, and power usage, offering a more precise and dynamic driving range estimation. Specifically, the approach utilizes stochastic dropout-based Long Short-Term Memory (LSTM) networks to predict vehicle speed, which serves as input to a Light Gradient Boosting Machine (LightGBM) model for estimating energy and power consumption. In addition, the Maximum Driving Range (MDR) concept is introduced as a new metric for identifying “hazard zones” where the likelihood of battery disconnection is high. Our approach was validated through real-world driving tests across three case studies in San José, Costa Rica. The model achieved a mean absolute error of 6.87 km/h for speed, 0.067 kWh for energy consumption, and 8.57 kW for power consumption, successfully predicting hazard zones 3.90 to 8.70 km before battery disconnection. These findings demonstrate the potential of this hybrid model in enhancing EV range predictions, offering a practical tool for improved route planning and driver confidence. Future work could involve adapting the model to diverse driving scenarios, incorporating user-specific risk tolerance and environmental factors, and improving computational efficiency to support real-time applications.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Computer Science, Artificial Intelligence
Automation & Control Systems
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
Control And Systems Engineering
Artificial Intelligence
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Garcia-Bustos, Jorge E. Hombre Universidad de Chile - Chile
1 Bustos, Jorge E. Garcia - Universidad de Chile - Chile
2 Baeza, Cesar - Universidad de Chile - Chile
3 Schiele, Benjamín Brito - Universidad de Chile - Chile
4 Rivera, Violeta - Universidad de Chile - Chile
5 Masserano, Bruno - Universidad de Chile - Chile
6 ORCHARD-CONCHA, MARCOS EDUARDO Hombre Universidad de Chile - Chile
7 Burgos-Mellado, Claudio Hombre Universidad de O’Higgins - Chile
Univ O Higgins - Chile
8 PEREZ-MORA, ARAMIS Hombre Universidad de Costa Rica - Costa Rica
UNIV COSTA RICA - Costa Rica

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Costa Rica
University of Costa Rica
DOCTORADO
ANID Fondecyt
ANID-PFCHA
ANID-PFCHA/Doctorado Nacional
Advanced Center for Electrical and Electronic Engineering, ANID Basal Project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by ANID FONDECYT 1210031, Advanced Center for Electrical and Electronic Engineering, ANID Basal Project AFB240002. The work of Jorge E. Garcia Bustos has been supported by ANID-PFCHA/Doctorado Nacional/2022-21221213. The work of Aramis Perez was supported by the University of Costa Rica under research projects 322-C1-465.
This work was supported in part by ANID FONDECYT 1210031, Advanced Center for Electrical and Electronic Engineering, ANID Basal Project AFB240002. The work of Jorge E. Garc\u00EDa Bustos has been supported by ANID-PFCHA/Doctorado Nacional/2022-21221213. The work of Aramis Perez was supported by the University of Costa Rica under research projects 322-C1-465.

Muestra la fuente de financiamiento declarada en la publicación.