Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1103/PHYSREVD.97.056023 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this article, we consider the magnetic corrections to pi-pi scattering lengths in the frame of the linear sigma model. For this, we consider all the one-loop corrections in the s, t, and u channels, associated to the insertion of a Schwinger propagator for charged pions, working in the region of small values of the magnetic field. Our calculation relies on an appropriate expansion for the propagator. It turns out that the leading scattering length, l = 0 in the S channel, increases for an increasing value of the magnetic field, in the isospin I = 2 case, whereas the opposite effect is found for the I = 0 case. The isospin symmetry is valid because the insertion of the magnetic field occurs through the absolute value of the electric charges. The channel I = 1 does not receive any corrections. These results, for the channels I = 0 and I = 2, are opposite with respect to the thermal corrections found previously in the literature.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | LOEWE-LOBO, MARCELO PATRICIO | Hombre |
Pontificia Universidad Católica de Chile - Chile
UNIV CAPE TOWN - República de Sudáfrica Universidad Técnica Federico Santa María - Chile University of Cape Town - República de Sudáfrica |
| 2 | Monje, L. | - |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | ZAMORA-JOFRE, RENATO ANDRES | Hombre |
Universidad Diego Portales - Chile
CIDCA - Chile Centro de Investigación y Desarrollo en Ciencias Aeroespaciales (CIDCA) - Chile |
| Fuente |
|---|
| FONDECYT (Chile) |
| U.S. Department of Energy |
| CONICYT Fondecyt Iniciacion |
| ConicytPIA/BASAL (Chile) |
| Intel Corporation |
| Agradecimiento |
|---|
| M. Loewe acknowledges support from FONDECYT (Chile) under Grants No. 1170107, No. 1150471, and No. 1150847 and ConicytPIA/BASAL (Chile) Grant No. FB0821; L. Monje acknowledges support from FONDECYT (Chile) under Grant No. 1170107; and R. Zamora would like to acknowledge support from CONICYT FONDECYT Iniciacion under Grant No. 11160234. |
| The authors are grateful to Peter Boyle, Ting-Wai Chiu, and Norman Christ for helpful discussions in support of this work. Calculations were performed using the Blue Gene/Q computers of the RIKEN-BNL Research Center and Brookhaven National Lab. The software used includes the CPS QCD code ( https://github.com/RBC-UKQCD/CPS ) [41] , supported in part by the USDOE SciDAC program, the BAGEL ( http://www2.ph.ed.ac.uk/paboyle/bagel/Bagel.html ) assembler kernel generator for high-performance optimized kernels and fermion solvers [36] , and the Grid data parallel C++ QCD library ( https://github.com/paboyle/Grid ) [42] . R. D. M. and D. J. M. are supported in part by U.S. DOE Grant No. DE-SC0011941. C. J. is supported in part by U.S. DOE Contract No. AC-02-98CH10886 (BNL). C. K. is supported by the Intel Corporation. |