Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/CLEI64178.2024.10700176 | ||||
| Año | 2024 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Recognizing variable stars is a task of interest in the astronomy community. Currently, this task has taken advantage of deep learning algorithms. However, these algorithms require a large amount of data to achieve high levels of precision. In this work, self-supervised learning is proposed to improve the classification of variable stars considering a reduced amount of data using recurrent networks. The experiments in Gaia dataset show that the proposed approach allows to improve performance, when compared with traditional initialization schemes, up to 7% and 13% in real databases in semi-supervised learning scenarios. In future work, we propose considering experiments with other variable star databases.
| Revista | ISSN |
|---|---|
| Proceedings Of The 2016 Xlii Latin American Computing Conference (Clei) | 2381-1609 |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Merino, Roberto | - |
Universidad Nacional Andrés Bello - Chile
|
| 2 | Jara, Pablo | - |
Universidad Nacional Andrés Bello - Chile
|
| 3 | Peralta, Billy | - |
Universidad Nacional Andrés Bello - Chile
|
| 4 | Nicolis, Orietta | - |
Universidad Nacional Andrés Bello - Chile
|
| 5 | Lobel, Hans | - |
Pontificia Universidad Católica de Chile - Chile
|
| 6 | Caro, Luis | - |
Universidad Católica de Temuco - Chile
|
| 7 | IEEE | Corporación |
| Fuente |
|---|
| National Center for Artificial Intelligence CENIA, Basal ANID |
| National Center for Artificial Intelligence CENIA |