Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Bus scheduling with heterogeneous fleets: Formulation and hybrid metaheuristic algorithms
Indexado
WoS WOS:001359898300001
Scopus SCOPUS_ID:85209132740
DOI 10.1016/J.ESWA.2024.125720
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper focuses on optimizing mixed-fleet bus scheduling (MFBS) with vehicles of different sizes in public transport systems. We develop a novel mixed-integer nonlinear programming (MINLP) model to address the MFBS problem by optimizing vehicle assignment and dispatching programs. The model considers user costs, operator costs, and the crowding inconvenience of standing and sitting passengers. To tackle the complexity of the MFBS problem, we employ Genetic Algorithm (GA) and Grey Wolf Optimizer (GWO). Besides, we develop two hybrid metaheuristics, including GA-SA [a combination of GA and Simulated Annealing (SA)] and GWO-SA (a combination of GWO and SA), to improve optimization capabilities for the MFBS problem. We also employ a Taguchi approach to fine-tune the metaheuristics' parameters. We widely examine and compare the metaheuristics' performance across various-sized samples (small, medium, and large), considering solution quality, computational time, and the result stability of each algorithm. We also compare the metaheuristics' solutions with the optimal solutions acquired by GAMS software in small and medium-scale samples. Our findings show that the GWO-SA outperforms the other metaheuristics. Applying our model to a real bus corridor in Santiago, Chile, we find that precise dispatching plans generated by more sophisticated/advanced algorithms (GA-SA and GWO-SA) lead to larger cost savings and improved performance compared to simpler algorithms (GA and GWO). Interestingly, utilizing more advanced algorithms makes a difference in terms of fleet planning in crowded scenarios, whereas for low and medium-demand cases, simpler dispatching algorithms could be used without a drop in accuracy.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Sadrani, Mohammad Hombre TECH UNIV MUNICH - Alemania
Technische Universität München - Alemania
2 TIRACHINI-HERNANDEZ, ALEJANDRO ANDRES Hombre Univ Twente - Países Bajos
Universidad de Chile - Chile
Universiteit Twente - Países Bajos
3 Antoniou, Constantinos - TECH UNIV MUNICH - Alemania
Technische Universität München - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Technische Universität München
International Graduate School of Science and Engineering
German MCube cluster
TUM-IGSSE
German MCube cluster (Forderkennzeichen)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We acknowledge the financial support from the German MCube cluster (Forderkennzeichen: 03ZU1105KA) and the TUM-IGSSE (project 12.04-MO3, Germany) . We sincerely appreciate the insightful comments from the Editor and two anonymous reviewers, which have improved the content and presentation of this paper.
We acknowledge the financial support from the German MCube cluster (F\u00F6rderkennzeichen: 03ZU1105KA) and the TUM-IGSSE (project 12.04-MO3, Germany). We sincerely appreciate the insightful comments from the Editor and two anonymous reviewers, which have improved the content and presentation of this paper.

Muestra la fuente de financiamiento declarada en la publicación.