Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Intelligent neuro-computational modelling for MHD nanofluid flow through a curved stretching sheet with entropy optimization: Koo-Kleinstreuer-Li approach
Indexado
WoS WOS:001321865100001
Scopus SCOPUS_ID:85205946288
DOI 10.1093/JCDE/QWAE078
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The present study explores the dynamics of a two-dimensional, incompressible nanofluid flow through a stretching curved sheet within a highly porous medium. The mathematical model is formulated by including external forces such as viscous dissipation, thermal radiation, Ohmic heating, chemical reactions, and activation energy by utilizing a curvilinear coordinate system. The viscosity and thermal conductivity of the nanofluids are examined using the Koo-Kleinstreuer-Li model. The choice of $Al_{2}O_{3}$ and $CuO$ nanoparticles in this model stems from their distinct thermal properties and widespread industrial applicability. By non-dimensionalizing the governing partial differential equations, the physical model is simplified into ordinary differential equations. BVP-5C solver in MATLAB is utilized to numerically solve the obtained coupled non-linear ordinary differential equation. Graphical results are presented to investigate the velocity, temperature, and concentration profiles with entropy generation optimization under the influence of several flow parameters. The artificial neural network backpropagated with Levenberg-Marquardt method (ANN-BLMM) used to study the model. The performance is validated using regression analysis, mean square error and error histogram plots. The outcome illustrates that the velocity and temperature profiles increase with increasing the Forchhiemer parameter. Also, the velocity profile increases with increasing curvature parameter, while, reverse effect is observed for temperature profile. This research augments our comprehension of nanofluid dynamics over curved surfaces, which has implications for engineering applications. The insights gained have the potential to significantly contribute to the advancement of energy-efficient and environmentally sustainable cooling systems in industrial processes.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Richa, Bhupendra K. -
1 Richa - Birla Institute of Technology and Science, Pilani - India
2 Sharma, Bhupendra K. - Birla Inst Technol & Sci - India
Birla Institute of Technology and Science, Pilani - India
3 Almohsen, Bandar - King Saud Univ - Arabia Saudí
3 Almohsen, Bandar - College of Sciences - Arabia Saudí
4 Laroze, David - Universidad de Tarapacá - Chile
4 Laroze, David - Universidad de Tarapacá - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
King Saud University, Riyadh, Saudi Arabia
Centers of excellence
DST-SERB, New Delhi
BASAL/ANID

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
D.L. acknowledges partial financial support from Centers of Excellence with BASAL/ANID financing, AFB220001. The research is supported by Researchers Supporting Project number (RSP2024R158), King Saud University, Riyadh, Saudi Arabia. The author B.K.S. expresses his sincere thanks to DST-SERB, New Delhi (Award letter No: MTR/2022/000315) under the MATRICS scheme.
D.L. acknowledges partial financial support from Centers of Excellence with BASAL/ANID financing, AFB220001. The research is supported by Researchers Supporting Project number (RSP2024R158), King Saud University, Riyadh, Saudi Arabia. The author B.K.S. expresses his sincere thanks to DST-SERB, New Delhi (Award letter No: MTR/2022/000315) under the MATRICS scheme.

Muestra la fuente de financiamiento declarada en la publicación.