Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/S10278-024-01335-Z | ||
| Año | 2024 | ||
| Tipo | revisión |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The Clever Hans effect occurs when machine learning models rely on spurious correlations instead of clinically relevant features and poses significant challenges to the development of reliable artificial intelligence (AI) systems in medical imaging. This scoping review provides an overview of methods for identifying and addressing the Clever Hans effect in medical imaging AI algorithms. A total of 173 papers published between 2010 and 2024 were reviewed, and 37 articles were selected for detailed analysis, with classification into two categories: detection and mitigation approaches. Detection methods include model-centric, data-centric, and uncertainty and bias-based approaches, while mitigation strategies encompass data manipulation techniques, feature disentanglement and suppression, and domain knowledge-driven approaches. Despite the progress in detecting and mitigating the Clever Hans effect, the majority of current machine learning studies in medical imaging do not report or test for shortcut learning, highlighting the need for more rigorous validation and transparency in AI research. Future research should focus on creating standardized benchmarks, developing automated detection tools, and exploring the integration of detection and mitigation strategies to comprehensively address shortcut learning. Establishing community-driven best practices and leveraging interdisciplinary collaboration will be crucial for ensuring more reliable, generalizable, and equitable AI systems in healthcare.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vasquez-Venegas, Constanza | - |
Universidad de Chile - Chile
Universidad de Concepción - Chile |
| 2 | Wu, Chenwei | - |
UNIV MICHIGAN - Estados Unidos
|
| 3 | Sundar, Saketh | - |
Harvard Univ - Estados Unidos
|
| 4 | Proa, Renata | - |
Harvard Univ - Estados Unidos
Hosp Israelita Albert Einstein - Brasil |
| 5 | Beloy, Francis Joshua | - |
Montefiore St Lukes Cornwall - Estados Unidos
|
| 6 | Medina, Jillian Reeze | - |
Manila Cent Univ - Filipinas
|
| 7 | Mcnichol, Megan | - |
Beth Israel Lahey Hlth - Estados Unidos
|
| 8 | Parvataneni, Krishnaveni | - |
MIT - Estados Unidos
|
| 9 | Kurtzman, Nicholas | - |
Emory Sch Med - Estados Unidos
|
| 10 | Mirshawka, Felipe | - |
Hosp Israelita Albert Einstein - Brasil
|
| 11 | Aguirre-Jerez, Marcela | - |
Fdn Arturo Lopez Perez - Chile
|
| 12 | Ebner, Daniel K. | - |
Mayo Clin - Estados Unidos
|
| 13 | Celi, Leo Anthony | - |
MIT - Estados Unidos
Beth Israel Deaconess Med Ctr - Estados Unidos Harvard TH Chan Sch Publ Hlth - Estados Unidos |
| Fuente |
|---|
| National Science Foundation |
| Laboratory for Computational Physiology (Massachusetts Institute of Technology) - National Institute of Health |
| Agradecimiento |
|---|
| The author Leo A. Celi received research support in the Laboratory for Computational Physiology (Massachusetts Institute of Technology), funded by the National Institute of Health through R01 EB017205, DS-I Africa U54 TW012043-01 and Bridge2 AIOT2OD032701, and the National Science Foundation through ITEST#2148451. |