Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Advancements in Machine Learning-Based Condition Monitoring for Crack Detection in Windmill Blades: A Comprehensive Review
Indexado
WoS WOS:001379359300001
Scopus SCOPUS_ID:85212288330
DOI 10.1007/S11831-024-10205-4
Año 2024
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Globally, the amount of wind turbines used to produce sustainable, renewable power is always increasing. Achieving dependable and easily accessible performance requires integrating innovative real-time condition monitoring technology. Ensuring the efficacy of wind power generation while maintaining its ability to generate revenue is fundamental. Machine learning (ML) has emerged as a crucial method for monitoring the condition of wind power systems in the past several years. This research study offers a comprehensive and current overview of contemporary condition monitoring technology employed in wind turbines for the purpose of detecting and predicting failures. Emphasizing machine learning algorithms for identifying significant faults and failure modes, preprocessing methods, and evaluation metrics, the review evaluates several references to determine past, present, and future developments in this field of study. Most of the analyzed references come from recent papers, reports, and journal articles that are freely available online.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Engineering, Multidisciplinary
Mathematics, Interdisciplinary Applications
Scopus
Computer Science Applications
Applied Mathematics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ashwitha, K. - NITTE - India
BMS Inst Technol & Management - India
Nitte (Deemed to be University) - India
BMS Institute of Technology and Management - India
2 Kiran, M. C. - Nitte Meenakshi Inst Technol - India
Nitte Meenakshi Institute of Technology - India
3 Shetty, Surendra - NITTE - India
Nitte (Deemed to be University) - India
4 Shahapurkar, Kiran - Saveetha Univ - India
Saveetha Dental College And Hospitals - India
5 Chenrayan, Venkatesh - Alliance Univ - India
Alliance University - India
6 Kumar, L. Rajesh - Alliance Univ - India
Alliance University - India
7 Bhaviripudi, Vijayabhaskara Rao - Universidad Tecnológica Metropolitana - Chile
8 Tirth, Vineet - King Khalid Univ - Arabia Saudí
King Khalid University - Arabia Saudí

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
King Khalid University
Deanship of Scientific Research, King Khalid University
Deanship of Research and Graduate studies at King Khalid University

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Small Research Group under the grant number RGP.1/3/45.
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Small Research Group under the grant number RGP.1/3/45.

Muestra la fuente de financiamiento declarada en la publicación.